1,357 research outputs found

    Circumstellar effects on the Rb abundances in O-rich AGB stars

    Full text link
    For the first time we explore the circumstellar effects on the Rb (and Zr) abundance determination in O-rich asymptotic giant branch (AGB) stars by considering the presence of a gaseous circumstellar envelope with a radial wind. A modified version of the spectral synthesis code Turbospectrum was used to deal with extended atmosphere models and velocity fields. The Rb and Zr abundances were determined from the resonant 7800A Rb I line and the 6474A ZrO bandhead, respectively, in five representative O-rich AGB stars with different expansion velocity and metallicity. By using our new dynamical models, the Rb I line profile (photospheric and circumstellar components) is very well reproduced. Interestingly, the derived Rb abundances are much lower (by 1-2 dex) in those O-rich AGB stars showing the higher circumstellar expansion velocities. The Zr abundances, however, remain close to the solar values. The Rb abundances and Rb/Zr ratios derived here significantly alleviate the problem of the present mismatch between the observations of intermediate-mass (4-8 solar masses) Rb-rich AGB stars and the AGB nucleosynthesis theoretical predictions.Comment: Accepted for publication in Astronomy & Astrophysics Letters (7 pages, 5 figures, and 2 tables); final version (language corrected

    A search for hydrogenated fullerenes in fullerene-containing planetary nebulae

    Full text link
    Detections of C60 and C70 fullerenes in planetary nebulae (PNe) of the Magellanic Clouds and of our own Galaxy have raised the idea that other forms of carbon such as hydrogenated fullerenes (fulleranes like C60H36 and C60H18), buckyonions, and carbon nanotubes, may be widespread in the Universe. Here we present VLT/ISAAC spectra (R ~600) in the 2.9-4.1 microns spectral region for the Galactic PNe Tc 1 and M 1-20, which have been used to search for fullerene-based molecules in their fullerene-rich circumstellar environments. We report the non-detection of the most intense infrared bands of several fulleranes around ~3.4-3.6 microns in both PNe. We conclude that if fulleranes are present in the fullerene-containing circumstellar environments of these PNe, then they seem to be by far less abundant than C60 and C70. Our non-detections together with the (tentative) fulleranes detection in the proto-PN IRAS 01005+7910 suggest that fulleranes may be formed in the short transition phase between AGB stars and PNe but they are quickly destroyed by the UV radiation field from the central star.Comment: Accepted for publication in Astronomy & Astrophysics (7 pages, 3 figures, and 3 Tables

    Rotating Stars and the Formation of Bipolar Planetary Nebulae II: Tidal Spin-up

    Full text link
    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing Planetary Nebulae (PNe) shaping via binary interaction. We explore whether tidal interaction with a companion can spin up the AGB envelope. To do so we have selected binary systems with main sequence masses of 2.5 \Mo and of 0.8 \Mo and evolve them allowing initial separations of 5, 6, 7, and 8 AU. The binary stellar evolution models have been computed all the way to the PNe formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 AU, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (3.5\sim 3.5 and 2\sim 2 \kms respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only 0.03\sim 0.03 \kms. For the closest binary separations explored, 5 and 6 AU, the AGB star reaches rotational velocities of 6\sim 6 and 4\sim 4 \kms respectively when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNe, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNe.Comment: 25 pages, 3 figures, accepted by The Astrophysical Journa
    corecore