30 research outputs found
Genetic counseling during COVID-19 pandemic: Tuscany experience
Background: COVID-19 outbreak prompted health centres to reorganize their clinical and surgical activity. In this paper, we show how medical genetics department's activity, in our tertiary pediatric hospital, has changed due to pandemic. Methods: We stratified all our scheduled visits, from March 9th through April 30th, and assessed case-by-case which genetic consultations should be maintained as face-to-face visit, or postponed/switched to telemedicine. Results: Out of 288 scheduled appointments, 60 were prenatal consultations and 228 were postnatal visits. We performed most of prenatal consultations as face-to-face visits, as women would have been present in the hospital to perform other procedures in addition to our consult. As for postnatal care, we suspended all outpatient first visits and opted for telemedicine for selected follow-up consultations: interestingly, 75% of our patients’ parents revealed that they would have cancelled the appointment themselves for the fear to contract an infection. Conclusions: Spread of COVID-19 in Italy forced us to change our working habits. Given the necessity to optimize healthcare resources and minimize the risk of in-hospital infections, we experienced the benefits of telegenetics. Current pandemic made us familiar with telemedicine, laying the foundations for its application to deal with the increasing number of requests in clinical genetics
Maternal iron status in early pregnancy and DNA methylation in offspring: an epigenome-wide meta-analysis
This is the final version. Available on open access from BMC via the DOI in this recordAvailability of data and materials:
Full meta-analysis results will be made available through an open access database upon acceptance. Cohort-level data are available from the cohort senior authors upon reasonable request and may be subject to local regulations.BACKGROUND: Unbalanced iron homeostasis in pregnancy is associated with an increased risk of adverse birth and childhood health outcomes. DNA methylation has been suggested as a potential underlying mechanism linking environmental exposures such as micronutrient status during pregnancy with offspring health. We performed a meta-analysis on the association of maternal early-pregnancy serum ferritin concentrations, as a marker of body iron stores, and cord blood DNA methylation. We included 1286 mother-newborn pairs from two population-based prospective cohorts. Serum ferritin concentrations were measured in early pregnancy. DNA methylation was measured with the Infinium HumanMethylation450 BeadChip (Illumina). We examined epigenome-wide associations of maternal early-pregnancy serum ferritin and cord blood DNA methylation using robust linear regression analyses, with adjustment for confounders and performed fixed-effects meta-analyses. We additionally examined whether associations of any CpGs identified in cord blood persisted in the peripheral blood of older children and explored associations with other markers of maternal iron status. We also examined whether similar findings were present in the association of cord blood serum ferritin concentrations with cord blood DNA methylation. RESULTS: Maternal early-pregnancy serum ferritin concentrations were inversely associated with DNA methylation at two CpGs (cg02806645 and cg06322988) in PRR23A and one CpG (cg04468817) in PRSS22. Associations at two of these CpG sites persisted at each of the follow-up time points in childhood. Cord blood serum ferritin concentrations were not associated with cord blood DNA methylation levels at the three identified CpGs. CONCLUSION: Maternal early-pregnancy serum ferritin concentrations were associated with lower cord blood DNA methylation levels at three CpGs and these associations partly persisted in older children. Further studies are needed to uncover the role of these CpGs in the underlying mechanisms of the associations of maternal iron status and offspring health outcomes
A meta-analysis of epigenome-wide association studies on pregnancy vitamin B12 concentrations and offspring DNA methylation
This is the final version. Available on open access from Routledge via the DOI in this record. Data availability statement:
Analysis plan and R code for cohort-specific analyses and meta-analyses are available via https://github.com/GiuliettaMonasso/PACE-B12-meta-analysis-of-EWAS.
The dataset(s) supporting the conclusions of this article is available in the [Zenodo repository]. All further relevant data supporting the key findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon reasonable request and subject to the study-specific data access procedures. Requests for access to the individual-level data for ALSPAC can be directed to GCS: [email protected]. Requests for access to the individual-level data for GENR can be directed to JFF: [email protected]. Requests for access to the individual-level data for INMA can be directed to MB: [email protected]. Requests for access to the individual-level data for MARBLES can be directed to RJS: [email protected]. Requests for access to the individual-level data for MoBa1 and MoBa2 can be directed to SEH: [email protected] vitamin B12 concentrations during pregnancy are associated with offspring health. Foetal DNA methylation changes could underlie these associations. Within the Pregnancy And Childhood Epigenetics Consortium, we meta-analysed epigenome-wide associations of circulating vitamin B12 concentrations in mothers during pregnancy (n = 2,420) or cord blood (n = 1,029), with cord blood DNA methylation. Maternal and newborn vitamin B12 concentrations were associated with DNA methylation at 109 and 7 CpGs, respectively (False Discovery Rate P-value <0.05). Persistent associations with DNA methylation in the peripheral blood of up to 482 children aged 4-10 y were observed for 40.7% of CpGs associated with maternal vitamin B12 and 57.1% of CpGs associated with newborn vitamin B12. Of the CpGs identified in the maternal meta-analyses, 4.6% were associated with either birth weight or gestational age in a previous work. For the newborn meta-analysis, this was the case for 14.3% of the identified CpGs. Also, of the CpGs identified in the newborn meta-analysis, 14.3% and 28.6%, respectively, were associated with childhood cognitive skills and nonverbal IQ. Of the 109 CpGs associated with maternal vitamin B12, 18.3% were associated with nearby gene expression. In this study, we showed that maternal and newborn vitamin B12 concentrations are associated with DNA methylation at multiple CpGs in offspring blood (PFDR<0.05). Whether this differential DNA methylation underlies associations of vitamin B12 concentrations with child health outcomes, such as birth weight, gestational age, and childhood cognition, should be further examined in future studies.Medical Research Council (MRC)European Research Council (ERC
Epigenome-wide meta-analysis of prenatal maternal stressful life events and newborn DNA methylation.
This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordCode availability:
The code used for this EWAS meta-analysis is available from the corresponding authors upon reasonable request.Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.Medical Research Council and Wellcome Trus
A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation
This is the final version. Available on open access from Nature Research via the DOI in this recordData availability:
Blood samples and raw genetic data of neonatal subjects from each cohort are governed by their respective institutions and/or government agencies, and mostly could not be shared publicly without specific approvals. For example, for data from first author cohort, California Childhood Leukemia Study (CCLS), we respectfully are unable to share raw, individual genetic data freely with other investigators. Should we be contacted by other investigators who would like to use the data; we will direct them to the California Department of Public Health Institutional Review Board to establish their own approved protocol to utilize the data, which can then be shared peer-to-peer.Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.National Institute of Environmental Health SciencesNational Cancer InstituteUS Environmental Protection Agenc
Effects Of Variation Of The Color Characteristics Of Lighting Sources By The Environmental Context
Over recent years the importance of using daylight in indoor environments to achieve reductions of energy consumption was largely discussed, but the use of
daylight is even more important because of its effects on human beings.
Daylight has a more uniform spectral distribution than the artificial sources (especially discharge lamps) and consequently it allows a better color perception;
moreover it changes during the day both in intensity and spectral power distribution (SPD).
For all these reasons, daylight ensures a high comfort in carrying out all the human activities and is also important to the circadian rhythm regulation; therefore it results necessary to evaluate the entrance of natural light in indoor environments both in qualitative and quantitative terms.
Until now, the approach was mainly based on the daylight factor (DF) value, while the spectral composition of radiations coming from the sky was not considered. A
proper use of daylight in indoor environments requires integration with electric lighting. Nowadays a designer can choose light sources with the most appropriate
color tone, expressed by means of correlated color temperature (CCT); for indoor applications, the most popular are mainly fluorescent and LED sources, each
disposable with different CCT. However, lit environments can be perceived differently under sources with the same CCT but different SPDs.
In this paper, an analysis of the characteristics of daylight and electric lighting in an indoor environment is carried out, by comparing SPDs and CCTs of the natural
source (sky) during typical winter days with contemporaneous measurements of spectral irradiances and CCTs detected at the eyes level.
From results obtained, the influence of indoor environment over spectral distribution of radiations, both from daylight and electric light, was evaluated
Loss-of-function variants in exon 4 of TAB2 cause a recognizable multisystem disorder with cardiovascular, facial, cutaneous, and musculoskeletal involvement
Purpose: This study aimed to describe a multisystemic disorder featuring cardiovascular, facial, musculoskeletal, and cutaneous anomalies caused by heterozygous loss-of-function variants in TAB2. Methods: Affected individuals were analyzed by next-generation technologies and genomic array. The presumed loss-of-function effect of identified variants was assessed by luciferase assay in cells transiently expressing TAB2 deleterious alleles. In available patients’ fibroblasts, variant pathogenicity was further explored by immunoblot and osteoblast differentiation assays. The transcriptomic profile of fibroblasts was investigated by RNA sequencing. Results: A total of 11 individuals from 8 families were heterozygotes for a novel TAB2 variant. In total, 7 variants were predicted to be null alleles and 1 was a missense change. An additional subject was heterozygous for a 52 kb microdeletion involving TAB2 exons 1 to 3. Luciferase assay indicated a decreased transcriptional activation mediated by NF-κB signaling for all point variants. Immunoblot analysis showed a reduction of TAK1 phosphorylation while osteoblast differentiation was impaired. Transcriptomic analysis identified deregulation of multiple pleiotropic pathways, such as TGFβ-, Ras-MAPK-, and Wnt-signaling networks. Conclusion: Our data defined a novel disorder associated with loss-of-function or, more rarely, hypomorphic alleles in a restricted linker region of TAB2. The pleiotropic manifestations in this disorder partly recapitulate the 6q25.1 (TAB2) microdeletion syndrome and deserve the definition of cardio-facial-cutaneous-articular syndrome