2 research outputs found
Improvement of shear capacity for precast segmental box girder dry joints by steel fiber and glass fiber
The use of precast segmental box girders in the bridge construction projects yields many benefits: economy, high quality, rapid construction, and minimal disruption to site. Previously, precast segments are connected together by epoxy joints. Epoxy fills in the gaps and makes strong connection, but it takes time and effort in the construction process. Later, dry joints have been introduced in the process, and hence the construction could be done much faster. However, there exists some drawback in using the dry joints. The contact surface between segments, especially at shear keys, can hardly be made smooth and well-fitted together. Consequently, the transferred shear strength cannot be developed to its full capacity. This study is an attempt to improve the capacity of shear strength of dry joints by adding steel fiber and glass fiber into concrete mixture. Considering specimens with single shear key, experiments have been conducted for shear capacities of 5 specimen types: ordinary concrete, concrete mixed with 1% and 2% steel fiber, and concrete mixed with 1% and 2% glass fiber. Results from experiments have shown that steel fiber helps increase the shear capacity of dry joints while glass fiber somehow degenerates the shear capacity and the compressive strength of concrete
Improvement of shear capacity for precast segmental box girder dry joints by steel fiber and glass fiber
The use of precast segmental box girders in the bridge construction projects yields many benefits: economy, high quality, rapid construction, and minimal disruption to site. Previously, precast segments are connected together by epoxy joints. Epoxy fills in the gaps and makes strong connection, but it takes time and effort in the construction process. Later, dry joints have been introduced in the process, and hence the construction could be done much faster. However, there exists some drawback in using the dry joints. The contact surface between segments, especially at shear keys, can hardly be made smooth and well-fitted together. Consequently, the transferred shear strength cannot be developed to its full capacity. This study is an attempt to improve the capacity of shear strength of dry joints by adding steel fiber and glass fiber into concrete mixture. Considering specimens with single shear key, experiments have been conducted for shear capacities of 5 specimen types: ordinary concrete, concrete mixed with 1% and 2% steel fiber, and concrete mixed with 1% and 2% glass fiber. Results from experiments have shown that steel fiber helps increase the shear capacity of dry joints while glass fiber somehow degenerates the shear capacity and the compressive strength of concrete