2 research outputs found

    DNA sequencing with MspA: molecular dynamics simulations reveal free-energy differences between sequencing and non-sequencing mutants

    No full text
    MspA has been identified as a promising candidate protein as a component of a nanopore-based DNA-sequencing device. However the wildtype protein must be engineered to incorporate all of the features desirable for an accurate and efficient device. In the present study we have utilized atomistic molecular dynamics to perform umbrella-sampling calculations to calculate the potential of mean force (PMF) profiles for translocation of the four DNA nucleotides through MspA. We show there is an energetic barrier to translocation of individual nucleotides through a mutant that closely resembles the wildtype protein, but not through a mutant engineered for the purpose of sequencing. Crucially we are able to quantify the change in free energy for mutating key residues. Thus providing a quantitative characterisation of the energetic impact of individual amino acid sidechains on nucleotide translocation through the pore of MspA

    A novel chimaeric flocculation protein enhances flocculation in Saccharomyces cerevisiae

    Get PDF
    Yeast flocculation is the reversible formation of multicellular complexes mediated by lectin-like cell wall proteins binding to neighbouring cells. Strong flocculation can improve the inhibitor tolerance and fermentation performance of yeast cells in second generation bioethanol production. The strength of flocculation increases with the size of the flocculation protein and is strain dependent. However, the large number of internal repeats in the sequence of FLO1 from Saccharomyces cerevisiae S288c makes it difficult to recombinantly express the gene to its full length. In the search for novel flocculation genes resulting in strong flocculation, we discovered a DNA sequence, FLONF, that gives NewFlo phenotype flocculation in S. cerevisiae CEN.PK 113-7D. The nucleotide sequence of the internal repeats of FLONF differed from those of FLO1. We hypothesized that a chimaeric flocculation gene made up of a FLO1 variant derived from S. cerevisiae S288c and additional repeats from FLONF from S. cerevisiae CCUG 53310 would be more stable and easier to amplify by PCR. The constructed gene, FLOw, had 22 internal repeats compared to 18 in FLO1. Expression of FLOw in otherwise non-flocculating strains led to strong flocculation. Despite the length of the gene, the cassette containing FLOw could be easily amplified and transformed into yeast strains of different genetic background, leading to strong flocculation in all cases tested. The developed gene can be used as a self-immobilization technique or to obtain rapidly sedimenting cells for application in e.g. sequential batches without need for centrifugation.</p
    corecore