4 research outputs found

    Synchronization in Networks of Identical Systems via Pinning: Application to Distributed Secondary Control of Microgrids

    Full text link
    Motivated by the need for fast synchronized operation of power microgrids, we analyze the problem of single and multiple pinning in networked systems. We derive lower and upper bounds on the algebraic connectivity of the network with respect to the reference signal. These bounds are utilized to devise a suboptimal algorithm with polynomial complexity to find a suitable set of nodes to pin the network effectively and efficiently. The results are applied to secondary voltage pinning control design for a microgrid in islanded operation mode. Comparisons with existing single and multiple pinning strategies clearly demonstrates the efficacy of the obtained results.Comment: 11 pages, 9 figures, submitted to Transactions on Control Systems Technolog

    Learning From Demonstration: Generalization Via Task Segmentation

    No full text
    In this paper, a motion segmentation algorithm design is presented with the goal of segmenting a learned trajectory from demonstration such that each segment is locally maximally different from its neighbors. This segmentation is then exploited to appropriately scale (dilate/squeeze and/or rotate) a nominal trajectory learned from a few demonstrations on a fixed experimental setup such that it is applicable to different experimental settings without expanding the dataset and/or retraining the robot. The algorithm is computationally efficient in the sense that it allows facile transition between different environments. Experimental results using the Baxter robotic platform showcase the ability of the algorithm to accurately transfer a feeding task

    Robust output feedback control for aeroelastic vibration suppression of a 2-DOF airfoil under quasi-steady flow

    No full text
    In this paper, a robust output feedback control design is developed for suppression of aeroelastic vibration of a 2-DOF nonlinear wing section system. The aeroelastic system operates in a quasi-steady aerodynamic incompressible flowfield and is actuated using a combination of a leading-edge (LE) and a trailing-edge (TE) flap. By only utilizing measurements of pitching and plunging deflections, an innovative Lyapunov-based procedure is used to design sliding mode control inputs for the LE and TE control surface deflections. The closed-loop system is shown to have semi-global asymptotic stability even in the presence of model uncertainty and unknown external gust loading. Extensive simulation results under a variety of scenarios show the effectiveness of the control strategy

    Synchronization In Networks Of Identical Systems Via Pinning: Application To Distributed Secondary Control Of Microgrids

    No full text
    Motivated by the need for the fast synchronized operation of power microgrids, we analyze the problem of single and multiple pinning in networked systems. We derive lower and upper bounds on the algebraic connectivity of the network with respect to the reference signal. These bounds are utilized to devise a suboptimal algorithm with polynomial complexity to find a suitable set of nodes to pin the network effectively and efficiently. The results are applied to secondary voltage pinning control design for a microgrid in islanded operation mode. Comparisons with existing single and multiple pinning strategies clearly demonstrate the efficacy of the obtained results
    corecore