22 research outputs found

    Oxaliplatin-induced neurotoxicity involves TRPM8 in the mechanism of acute hypersensitivity to cold sensation

    Get PDF
    Oxaliplatin-induced peripheral neurotoxicity (OPN) is commonly associated with peripheral hypersensitivity to cold sensations (CS) but the mechanism is unknown. We hypothesized that the transient receptor potential melastatin 8 (TRPM8), a putative cold and menthol receptor, contributes to oxaliplatin cold hypersensitivity. To determine whether the TRPM8 is involved in acute OPN, varying concentrations of menthol were topically applied to the tongues of healthy subjects (n = 40) and colorectal cancer patients (n = 36) before and after oxaliplatin administration. The minimum concentration of menthol to evoke CS at the menthol application site was determined as the CS detection threshold (CDT). In healthy subjects, the mean CDT was 0.068. Sex and age differences were not found in the CDT. In advanced colorectal cancer patients, the mean CDT significantly decreased from 0.067% to 0.028% (P = 0.0039) after the first course of oxaliplatin infusions, and this marked CS occurred in patients who had grade 1 or less neurotoxicity, and grade 2 neurotoxicity, but not in those with grade 3 neurotoxicity. Further, the mean baseline CDT in oxaliplatin-treated patients was significantly higher than that of chemotherapy-naïve patients and healthy subjects (0.151% vs. 0.066%, P = 0.0225), suggesting that acute sensory changes may be concealed by progressive abnormalities in sensory axons in severe neurotoxicity, and that TRPM8 is subject to desensitization on repeat stimulation. Our study demonstrates the feasibility of undertaking CDT test in a clinical setting to facilitate the identification of early neurotoxicity. Moreover, our results indicate potential TRPM8 involvement in acute OPN

    the wax-mediated host-start polymerase chain reaction(PCR)法はCYP2C9*1及び*3アレルの遺伝子型同定を改善する(A Wax-Mediated Hot-Start Polymerase Chain Reaction Improves the Genotyping of CYP2C9* 1 and * 3 Alleles)

    Get PDF
    雑誌掲載版健常者64名を対象に,wax-mediated host-start polymerase chain reaction(PCR)法がcytochrome P4502C9(CYP2C9)*1及び*3アレルを特異的に増殖させるかどうか検討した.連続的に希釈したDNAテンプレートをhost-start PCR法で増殖し,酵素分解なしにアガロースゲル電気泳動させたところ,10μgのDNAテンプレートでも非特異的増殖バンドなしにCYP2C9由来の165bpバンドがはっきり検出された.このバンドの濃さはテンプレート量に比例して増加した.一方waxを使用しないPCR法の場合,アレルの増殖は不規則であった.本法はCYP2C9*1及び*3アレル検出の感度を著明に増加させ,一貫した性能を持ち,バックグラウンドが低く,臨床的に有用であると考えられ

    Meloxicam protects cell damage from 1-methyl-4-phenyl pyridinium toxicity via the phosphatidylinositol 3-kinase/Akt pathway in human dopaminergic neuroblastoma SH-SY5Y cells

    Get PDF
    http://dx.doi.org/10.1016/j.brainres.2010.04.085Parkinson's disease (PD) is a common neurodegenerative disorder characterized by dopaminergic neuronal death in the substantia nigra pars compacta. There is growing interest in the effects of nonsteroidal antiinflammatory drugs (NSAIDs) against PD progression. In this study, we investigated the neuroprotective effect of NSAIDs on neuronal damage induced by 1-methyl-4-phenyl pyridinium (MPP^+) in human dopaminergic SH-SY5Y neuroblastoma cells. Of the NSAIDs tested, only meloxicam indicated protective effect on MPP^+-induced neurotoxicity in SH-SY5Y cells, although such an effect was not established with indomethacin, ibuprofen and cyclooxygenase (COX)-2 selective inhibitors (NS-398 and CAY-10404). The neuroprotective effect of meloxicam against MPP^+ toxicity was specific, as toxicities induced by other cytotoxic agents (such as rotenone, MG-132, tunicamycin and ethacrynic acid) were not attenuated by meloxicam. The neuroprotective effect of meloxicam on MPP^+-induced apoptosis was abolished by a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, but not by a MEK inhibitor, PD98059. The Akt phosphorylation levels were predominantly suppressed 4 h after MPP^+ incubation (i.e. when the cell toxicity was not apparently observed yet). Meloxicam completely prevented the Akt phosphorylation suppression caused by MPP^+ exposure, while meloxicam per se did not promote the Akt phosphorylation. These results strongly suggest that the neuroprotective effect of meloxicam is mediated by the maintenance of cell survival signaling in the PI3K/Akt pathway, but not by COX-2 inhibition. Therefore, meloxicam may have therapeutic potential in preventing development or delaying progress of PD

    Meloxicam ameliorates motor dysfunction and dopaminergic neurodegeneration by maintaining Akt-signaling in a mouse Parkinson's disease model

    Get PDF
    AuthorA series of oxicam non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to be neuroprotective against 1-methyl-4-phenyl pyridinium in human neuroblastoma SH-SY5Y cells via the phosphatidylinositol 3-kinase (PI3K)/Akt pathway independent of cyclooxygenase (COX) inhibition. The present study endeavored to establish this novel effect of meloxicam (MLX), an oxicam NSAID, in a mouse Parkinson's disease (PD) model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Male C57BL/6 mice, which received MPTP (30 mg/kg/day; s.c.) for 5 consecutive days (chronic model) with 10-day follow-up saline administrations, showed significant motor dysfunction in the pole test due to reduced tyrosine hydroxylase (TH) protein levels in the brain on day 16 after MPTP/saline treatment. Daily coadministrations of MLX (10mg/kg/day; i.p.) and MPTP for the first 5 days and follow-up 10 days with MLX administrations alone (MPTP/MLX treatment) significantly ameliorated MPTP-induced behavioral abnormalities in mice. Concomitant decreases of TH protein levels in the striatum and midbrain of MPTP/MLX-treated mice were not only significantly (p<0.01 and p<0.05, respectively) ameliorated but phosphorylated Akt (pAkt473) expression in the midbrain was also significantly (p<0.01) increased in the midbrain when compared with MPTP/saline-treated mice. These results suggest that MLX, an oxicam NSAID, attenuated dopaminergic neuronal death in the experimental MPTP-PD model by maintenance of the Akt-signaling. Oxicam NSAIDs may serve as potential drugs for PD treatment via a novel mechanism of action
    corecore