920 research outputs found

    Low-depth Hamiltonian Simulation by Adaptive Product Formula

    Full text link
    Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems using a universal quantum computer. However, existing algorithms generally approximate the entire time evolution operators, which may need a deep quantum circuit that are beyond the capability of near-term noisy quantum devices. Here, focusing on the time evolution of a fixed input quantum state, we propose an adaptive approach to construct a low-depth time evolution circuit. By introducing a measurable quantifier that describes the simulation error, we use an adaptive strategy to learn the shallow quantum circuit that minimizes the simulation error. We numerically test the adaptive method with the electronic Hamiltonians of H2O\mathrm{H_2O} and H4\mathrm{H_4} molecules, and the transverse field ising model with random coefficients. Compared to the first-order Suzuki-Trotter product formula, our method can significantly reduce the circuit depth (specifically the number of two-qubit gates) by around two orders while maintaining the simulation accuracy. We show applications of the method in simulating many-body dynamics and solving energy spectra with the quantum Krylov algorithm. Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.Comment: 10 pages, 2 figure

    Trinitrophenol Reactive T-Cell Hybridomas Recognize Antigens That Require Antigen Processing

    Get PDF
    Protein antigens must be taken up, processed, and displayed on the surface of antigen-presenting cells in association with major histocompatibility complex molecules before they can be recognized by T cells. Whether recognition of the haptens used to study allergic contact hypersensitivity in murine models similarly requires processing has not been determined. We analyzed whether presentation of trinitrophenol to trinitrophenol reactive T-cell hybridomas requires antigen processing by studying the effects of inhibitors of antigen processing and presentation on tile ability of a syngeneic B-cell tumor (A20) to present trinitrophenol to a series of interleukin-2 producing, trinitrophenol specific, major histocompatibility complex class II-restricted T-cell hybridomas.The ability of trinitrophenol modified A20 cells to stimulate the hybridomas was completely inhibited by rnonoclonal, anti-trinitrophenol, or anti-Ia antibodies and was significantly reduced by paraformaldehyde fixation immediately after trinitrophenol modification. Trinitrophenol-modified A20 cultured at 37°C for 2h prior to fixation was significantly more effective at stimulating the hybridomas than trinitrophenol-modified A20 to present trinitrophenol was inhibited by chloroquine. Paraformaldehyde fixation and chloroquine treatment had similar effects on the ability of trinitrophenol modified lymph node dendritic cells to stimulate the trinitrophenol specific hybridomas. Paraformaldehyde fixation and chloroquine treatment had similar effects on the ability of A20 cells to present ovalbumin to ovalbumin-specific hybridomas as they had on the ability of trinitrophenol modified A20 cells to present trinitrophenol to the trinitrophenol specific hybridomas. One of seven T-cell hybridomas responded to trinitrophenol modified ovalbumin but not other trinitrophenol modified proteins. These results suggest that, at least in part, T cells in the contact hypersensitivity response to trinitrophenol recognize antigens that require processing and that trinitrophenol modified proteins can be recognized

    Aristolochic Acid-Induced Autophagy Promotes Epithelial-to-Myofibroblast Transition in Human Renal Proximal Tubule Epithelial Cells

    Get PDF
    Autophagy plays an essential role in cellular homeostasis in kidney. Previous studies have found that aristolochic acid (AA) can induce autophagy of renal tubular epithelial cells and epithelial-to-myofibroblast transition (EMT). However, the relationship between AA-induced autophagy and EMT is unclear. Our results showed that, after AA stimulation, the appearance of autophagy preceded EMT. Autophagy of HKC cells began to increase gradually from the 3rd hour, reached the peak at 12th hour, and then weakened gradually until 36th hour; the EMT process of HKC continued to increase from 6th hour to 36th hour after AA stimulation. The enhancement of autophagy using autophagy inducers, rapamycin or serum-free medium, led to an aggravation of EMT and upregulated expression of fibronectin, a component of extracellular matrix, in AA-treated HKC cells. In contrast, the inhibition of autophagy by autophagy inhibitor, 3-methyladenine, or by knockdown of Beclin 1 led to an attenuation of EMT and downregulated expression of fibronectin in AA-treated HKC cells. Taken together, our study suggests that, after AA stimulation, two types of cell responses of HKC cells, autophagy and EMT, will successively appear, and autophagy can promote EMT of HKC

    Wall-Eyed Monocular Internuclear Ophthalmoplegia (WEMINO) with Contraversive Ocular Tilt Reaction

    Get PDF
    Wall-eyed monocular internuclear ophthalmoplegia (WEMINO) with contraversive ocular tilt reaction has not been previously reported. A 71-year-old woman suddenly developed blurred vision. Examination revealed left internuclear ophthalmoplegia, left exotropia, right hypotropia, and rightward head tilt. Magnetic resonance imaging showed a tiny infarction at the area of the left medial longitudinal fasciculus in the upper pons. WEMINO with contraversive ocular tilt reaction may be caused by a paramedian pontine tegmental infarction that selectively involves the medial longitudinal fasciculus
    • …
    corecore