3,188 research outputs found

    PyCDFT: A Python package for constrained density functional theory

    Full text link
    We present PyCDFT, a Python package to compute diabatic states using constrained density functional theory (CDFT). PyCDFT provides an object-oriented, customizable implementation of CDFT, and allows for both single-point self-consistent-field calculations and geometry optimizations. PyCDFT is designed to interface with existing density functional theory (DFT) codes to perform CDFT calculations where constraint potentials are added to the Kohn-Sham Hamiltonian. Here we demonstrate the use of PyCDFT by performing calculations with a massively parallel first-principles molecular dynamics code, Qbox, and we benchmark its accuracy by computing the electronic coupling between diabatic states for a set of organic molecules. We show that PyCDFT yields results in agreement with existing implementations and is a robust and flexible package for performing CDFT calculations. The program is available at https://github.com/hema-ted/pycdft/.Comment: main text: 27 pages, 6 figures supplementary: 7 pages, 2 figure

    Steady Bell state generation via magnon-photon coupling

    Full text link
    We show that parity-time (PT\mathcal{PT}) symmetry can be spontaneously broken in the recently reported energy level attraction of magnons and cavity photons. In the PT\mathcal{PT}-broken phase, magnon and photon form a high-fidelity Bell state with maximum entanglement. This entanglement is steady and robust against the perturbation of environment, in contrast to the general wisdom that expects instability of the hybridized state when the symmetry is broken. This anomaly is further understood by the compete of non-Hermitian evolution and particle number conservation of the hybridized system. As a comparison, neither PT\mathcal{PT}-symmetry broken nor steady magnon-photon entanglement is observed inside the normal level repulsion case. Our results may open a novel window to utilize magnon-photon entanglement as a resource for quantum technologies.Comment: 5 pages, 4 figure
    • …
    corecore