4 research outputs found

    On the dynamics of WKB wave functions whose phase are weak KAM solutions of H-J equation

    Full text link
    In the framework of toroidal Pseudodifferential operators on the flat torus Tn:=(R/2πZ)n\Bbb T^n := (\Bbb R / 2\pi \Bbb Z)^n we begin by proving the closure under composition for the class of Weyl operators Opw(b)\mathrm{Op}^w_\hbar(b) with simbols bSm(Tn×Rn)b \in S^m (\mathbb{T}^n \times \mathbb{R}^n). Subsequently, we consider Opw(H)\mathrm{Op}^w_\hbar(H) when H=12η2+V(x)H=\frac{1}{2} |\eta|^2 + V(x) where VC(Tn;R)V \in C^\infty (\Bbb T^n;\Bbb R) and we exhibit the toroidal version of the equation for the Wigner transform of the solution of the Schr\"odinger equation. Moreover, we prove the convergence (in a weak sense) of the Wigner transform of the solution of the Schr\"odinger equation to the solution of the Liouville equation on Tn×Rn\Bbb T^n \times \Bbb R^n written in the measure sense. These results are applied to the study of some WKB type wave functions in the Sobolev space H1(Tn;C)H^{1} (\mathbb{T}^n; \Bbb C) with phase functions in the class of Lipschitz continuous weak KAM solutions (of positive and negative type) of the Hamilton-Jacobi equation 12P+xv±(P,x)2+V(x)=Hˉ(P)\frac{1}{2} |P+ \nabla_x v_\pm (P,x)|^2 + V(x) = \bar{H}(P) for PZnP \in \ell \Bbb Z^n with >0\ell >0, and to the study of the backward and forward time propagation of the related Wigner measures supported on the graph of P+xv±P+ \nabla_x v_\pm

    Measurement of the ϕ\phi meson parameters with CMD-2 detector at VEPP-2M Collider

    Full text link
    About 300 000 e+eϕKL0KS0e^+e^-\to \phi\to K^0_L K^0_S events in the center of mass energy range from 984 to 1040 MeV were used for the measurement of the ϕ\phi meson parameters. The following results have been obtained: σ0=(1367±15±21)nb,mϕ=(1019.504±0.011±0.033)MeV/c2,Γϕ=(4.477±0.036±0.022)MeV,Γe+eB(ϕKL0KS0)=(4.364±0.048±0.065)104\sigma_0 = (1367 \pm 15 \pm 21) nb, m_{\phi}=(1019.504 \pm 0.011 \pm 0.033) MeV/c^2, \Gamma_\phi=(4.477 \pm 0.036 \pm 0.022) MeV, \Gamma_{e^+e^-}\cdot B(\phi\to K^0_L K^0_S) = (4.364 \pm 0.048 \pm 0.065)\cdot 10^{-4} MeV.Comment: 13 pages, 5 figures, 5 table
    corecore