160 research outputs found

    Classical mechanics is not h=0 limit of quantum mechanics

    Full text link
    Both the set of quantum states and the set of classical states described by symplectic tomographic probability distributions (tomograms) are studied. It is shown that the sets have common part but there exist tomograms of classical states which are not admissible in quantum mechanics and vica versa, there exist tomograms of quantum states which are not admissible in classical mechanics. Role of different transformations of reference frames in phase space of classical and quantum systems (scaling and rotation) determining the admissibility of the tomograms as well as the role of quantum uncertainty relations is elucidated. Union of all admissible tomograms of both quantum and classical states is discussed in context of interaction of quantum and classical systems. Negative probabilities in classical mechanics and in quantum mechanics corresponding to the tomograms of classical states and quantum states are compared with properties of nonpositive and nonnegative density operators, respectively.Comment: 14 pages, to appear in Journal of Russian Laser Res.(Kluwer Pub.

    Photon-number tomography and fidelity

    Full text link
    The scheme of photon-number tomography is discussed in the framework of star-product quantization. The connection of dual quantization scheme and observables is reviewed. The quantizer and dequantizer operators and kernels of star product of tomograms in photon-number tomography scheme and its dual one are presented in explicit form. The fidelity and state purity are discussed in photon{number tomographic scheme, and the expressions for fidelity and purity are obtained in the form of integral of the product of two photon-number tomograms with integral kernel which is presented in explicit form. The properties of quantumness are discussed in terms of inequalities on state photon{number tomograms.Comment: the paper is submitted for publication in AIP Conference Serie
    corecore