2,240 research outputs found
Dense matter equation of state for neutron star mergers
In simulations of binary neutron star mergers, the dense matter equation of
state (EOS) is required over wide ranges of density and temperature as well as
under conditions in which neutrinos are trapped, and the effects of magnetic
fields and rotation prevail. Here we assess the status of dense matter theory
and point out the successes and limitations of approaches currently in use. A
comparative study of the excluded volume (EV) and virial approaches for the
system using the equation of state of Akmal, Pandharipande and
Ravenhall for interacting nucleons is presented in the sub-nuclear density
regime. Owing to the excluded volume of the -particles, their mass
fraction vanishes in the EV approach below the baryon density 0.1 fm,
whereas it continues to rise due to the predominantly attractive interactions
in the virial approach. The EV approach of Lattimer et al. is extended here to
include clusters of light nuclei such as d, H and He in addition to
-particles. Results of the relevant state variables from this
development are presented and enable comparisons with related but slightly
different approaches in the literature. We also comment on some of the sweet
and sour aspects of the supra-nuclear EOS. The extent to which the neutron star
gravitational and baryon masses vary due to thermal effects, neutrino trapping,
magnetic fields and rotation are summarized from earlier studies in which the
effects from each of these sources were considered separately. Increases of
about occur for rigid (differential) rotation with
comparable increases occurring in the presence of magnetic fields only for
fields in excess of Gauss. Comparatively smaller changes occur due to
thermal effects and neutrino trapping. Some future studies to gain further
insight into the outcome of dynamical simulations are suggested.Comment: Revised manuscript with one additional figure and previous Fig. 4
replaced, 19 additional references and new tex
Hierarchical Design Based Intrusion Detection System For Wireless Ad hoc Network
In recent years, wireless ad hoc sensor network becomes popular both in civil
and military jobs. However, security is one of the significant challenges for
sensor network because of their deployment in open and unprotected environment.
As cryptographic mechanism is not enough to protect sensor network from
external attacks, intrusion detection system needs to be introduced. Though
intrusion prevention mechanism is one of the major and efficient methods
against attacks, but there might be some attacks for which prevention method is
not known. Besides preventing the system from some known attacks, intrusion
detection system gather necessary information related to attack technique and
help in the development of intrusion prevention system. In addition to
reviewing the present attacks available in wireless sensor network this paper
examines the current efforts to intrusion detection system against wireless
sensor network. In this paper we propose a hierarchical architectural design
based intrusion detection system that fits the current demands and restrictions
of wireless ad hoc sensor network. In this proposed intrusion detection system
architecture we followed clustering mechanism to build a four level
hierarchical network which enhances network scalability to large geographical
area and use both anomaly and misuse detection techniques for intrusion
detection. We introduce policy based detection mechanism as well as intrusion
response together with GSM cell concept for intrusion detection architecture.Comment: 16 pages, International Journal of Network Security & Its
Applications (IJNSA), Vol.2, No.3, July 2010. arXiv admin note: text overlap
with arXiv:1111.1933 by other author
- …