90 research outputs found

    Calculation of the ultracold neutron upscattering loss probability in fluid walled storage bottles using experimental measurements of the thermomechanical properties of Fomblin

    Full text link
    We present experimental measurements of the properties of a liquid "Fomblin" surface obtained by the quasielastic scattering of laser light. The properties include the surface tension and viscosity as a function of temperature. The results are compared to the measurements of the bulk fluid properties. We then calculate the upscattering rate of ultracold neutrons (UCN) from thermally excited surface capillary waves on the liquid surface and compare the results to experimental measurements of the UCN lifetime in Fomblin fluid-walled UCN storage bottles, and show that the excess loss rate for UCN energies near the Fomblin potential can be explained. The rapid temperature dependence of the Fomblin storage lifetime is explained by our analysis.Comment: 25 pages, 13 figures; 2nd version corrects several error

    Neutron Lifetime Measured with Stored Ultracold Neutrons

    Get PDF
    The neutron lifetime has been measured by counting the neutrons remaining in a fluid-walled bottle as a function of the duration of storage. Losses of neutrons caused by the wall reflections are eliminated by varying the bottle volume-to-surface ratio. The result obtained is τβ=887.6±3 s

    A New World Average Value for the Neutron Lifetime

    Full text link
    The analysis of the data on measurements of the neutron lifetime is presented. A new most accurate result of the measurement of neutron lifetime [Phys. Lett. B 605 (2005) 72] 878.5 +/- 0.8 s differs from the world average value [Phys. Lett. B 667 (2008) 1] 885.7 +/- 0.8 s by 6.5 standard deviations. In this connection the analysis and Monte Carlo simulation of experiments [Phys. Lett. B 483 (2000) 15] and [Phys. Rev. Lett. 63 (1989) 593] is carried out. Systematic errors of about -6 s are found in each of the experiments. The summary table for the neutron lifetime measurements after corrections and additions is given. A new world average value for the neutron lifetime 879.9 +/- 0.9 s is presented.Comment: 27 pages, 13 figures; Fig.13 update

    Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    Full text link
    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.Comment: 38 pages, 19 figures,changed conten

    Testing the Unitarity of the CKM Matrix with a Space-Based Neutron Decay Experiment

    Full text link
    If the Standard Model is correct, and fundamental fermions exist only in the three generations, then the CKM matrix should be unitary. However, there remains a question over a deviation from unitarity from the value of the neutron lifetime. We discuss a simple space-based experiment that, at an orbit height of 500 km above Earth, would measure the kinetic-energy, solid-angle, flux spectrum of gravitationally bound neutrons (kinetic energy K<0.606 eV at this altitude). The difference between the energy spectrum of neutrons that come up from the Earth's atmosphere and that of the undecayed neutrons that return back down to the Earth would yield a measurement of the neutron lifetime. This measurement would be free of the systematics of laboratory experiments. A package of mass <25<25 kg could provide a 10^{-3} precision in two years.Comment: 10 pages, 4 figures. Revised and updated for publicatio

    Nanoparticles as a possible moderator for an ultracold neutron source

    Full text link
    Ultracold and very cold neutrons (UCN and VCN) interact strongly with nanoparticles due to the similarity of their wavelengths and nanoparticles sizes. We analyze the hypothesis that this interaction can provide efficient cooling of neutrons by ultracold nanoparticles at certain experimental conditions, thus increasing the density of UCN by many orders of magnitude. The present analytical and numerical description of the problem is limited to the model of independent nanoparticles at zero temperature. Constraints of application of this model are discussed

    The Evaluation of V_{ud}, Experiment and Theory

    Full text link
    The value of the V_{ud} matrix element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix can be derived from nuclear superallowed beta decays, neutron decay, and pion beta decay. We survey current world data for all three. Today, the most precise value of V_{ud} comes from the nuclear decays; however, the precision is limited not by experimental error but by the estimated uncertainty in theoretical corrections. Experimental uncertainty does limit the neutron-decay result, which, though statistically consistent with the nuclear result, is approximately a factor of three poorer in precision. The value obtained for VudV_{ud} leads to a result that differs at the 98% confidence level from the unitarity condition for the CKM matrix. We examine the reliability of the small calculated corrections that have been applied to the data, and assess the likelihood of even higher quality nuclear data becoming available to confirm or deny the discrepancy. Some of the required experiments depend upon the availability of intense radioactive beams. Others are possible today.Comment: 21 pages, 1 figure, LaTe

    Measurement of the Neutron Lifetime by Counting Trapped Protons in a Cold Neutron Beam

    Full text link
    A measurement of the neutron lifetime τn\tau_{n} performed by the absolute counting of in-beam neutrons and their decay protons has been completed. Protons confined in a quasi-Penning trap were accelerated onto a silicon detector held at a high potential and counted with nearly unit efficiency. The neutrons were counted by a device with an efficiency inversely proportional to neutron velocity, which cancels the dwell time of the neutron beam in the trap. The result is τn=(886.6±1.2[stat]±3.2[sys])\tau_{n} = (886.6\pm1.2{\rm [stat]}\pm3.2{\rm [sys]}) s, which is the most precise measurement of the lifetime using an in-beam method. The systematic uncertainty is dominated by neutron counting, in particular the mass of the deposit and the 6^{6}Li({\it{n,t}}) cross section. The measurement technique and apparatus, data analysis, and investigation of systematic uncertainties are discussed in detail.Comment: 71 pages, 20 figures, 9 tables; submitted to PR

    Right Handed Weak Currents in Sum Rules for Axialvector Constant Renormalization

    Get PDF
    The recent experimental results on deep inelastic polarized lepton scattering off proton, deuteron and 3^{3}He together with polari% zed neutron β\beta-decay data are analyzed. It is shown that the problem of Ellis-Jaffe and Bjorken sum rules deficiency and the neutron paradox could be solved simultaneously by assuming the small right handed current (RHC) admixture in the weak interaction Lagrangian. The possible RHC impact on pion-nucleon σ\sigma-term and Gamow-Teller sum rule for (p,n)(p,n) nuclear reactions is pointed out.Comment: to be published in Phys. Rev. Lett. LaTeX, 8 pages, 21 k

    Mineral-PET: Kimberlite sorting by nuclear-medical technology

    Get PDF
    A revolutionary new technology for diamond bearing rock sorting which has its roots in medical-nuclear physics has been taken through a substantial part of the R&D phase. This has led to the construction of the technology demonstrator. Experiments using the technology demonstrator and experiments at a hospital have established the scientific and technological viability of the project
    corecore