4 research outputs found

    Impact of Human Settlements on Diversity of Range Vegetation

    No full text
    The rapidly increasing population of human beings in semi-arid areas is often considered as a major factor of land degradation. Only a few studies have examined the dynamics of human settlements on the composition, diversity, structure and palatability of range vegetation in Southern Punjab Pakistan. The current study aims to assess whether the distance from settlements had any effect on the range vegetation’s diversity and cover. In order to determine the impact of human settlements on the vegetation, the sampling area (Thal rangeland) was classified into three categories, i.e., Near (1–2 km from human communities), Away (2–4 km from human communities), and Far (4–6 km from human settlements). A total of 75 transects in all of the three sites were placed in the study sites. Along the transects, a quadrate of 1 m2 after every 10 m was randomly placed. The study site yielded floral diversity of a total of 29 species, representing 23 genera and belonging to 9 families. Results showed that the areas away from the human communities had higher species diversity (20), while the site near to human settlements depicted lower diversity (14). It was observed that, although the site near to communities had lower diversity, it depicted higher plant density, while the highest diversity along with the lowest plant density was observed in sites away from the communities. The study concluded that the diversity of range grasses, especially desirable species, was affected by distance to human settlements. These findings could be useful to detect flora changes, establish habitat protection priorities and improve efforts for conserving natural landscapes

    Impact of Human Settlements on Diversity of Range Vegetation

    No full text
    The rapidly increasing population of human beings in semi-arid areas is often considered as a major factor of land degradation. Only a few studies have examined the dynamics of human settlements on the composition, diversity, structure and palatability of range vegetation in Southern Punjab Pakistan. The current study aims to assess whether the distance from settlements had any effect on the range vegetation’s diversity and cover. In order to determine the impact of human settlements on the vegetation, the sampling area (Thal rangeland) was classified into three categories, i.e., Near (1–2 km from human communities), Away (2–4 km from human communities), and Far (4–6 km from human settlements). A total of 75 transects in all of the three sites were placed in the study sites. Along the transects, a quadrate of 1 m2 after every 10 m was randomly placed. The study site yielded floral diversity of a total of 29 species, representing 23 genera and belonging to 9 families. Results showed that the areas away from the human communities had higher species diversity (20), while the site near to human settlements depicted lower diversity (14). It was observed that, although the site near to communities had lower diversity, it depicted higher plant density, while the highest diversity along with the lowest plant density was observed in sites away from the communities. The study concluded that the diversity of range grasses, especially desirable species, was affected by distance to human settlements. These findings could be useful to detect flora changes, establish habitat protection priorities and improve efforts for conserving natural landscapes

    Urban Growth Patterns and Forest Carbon Dynamics in the Metropolitan Twin Cities of Islamabad and Rawalpindi, Pakistan

    No full text
    The unchecked and unplanned expansion of urban areas has led to the conversion of millions of green areas to gray areas. The recent urban growth patterns of Pakistan’s metropolitan twin cities, Islamabad and Rawalpindi, is a matter of concern for the surrounding green areas. The present study aimed to categorize and quantify the land-use and land-cover change (LULCC) patterns and the corresponding impacts on the forest carbon dynamics around Islamabad and Rawalpindi. Multispectral satellite images for the year 1990 (Landsat 5 TM) and 2020 (Landsat 8 OLI) were used to determine, quantify, and compare the LULCC inside and around the twin metropolitan cities. Field inventory surveys in the reserved forests of Rawalpindi and Islamabad were also conducted to determine the amount of stored carbon in these forests. Our results showed an accelerated annual urban expansion (i.e., an increase in the built-up area) of 16.49% and 26.72% in Rawalpindi and Islamabad, respectively, during the study period. Similarly, the amount of barren land and agricultural land was reduced at an annual rate of 2.08% and 2.18%, respectively, in Rawalpindi and 0.25% and 1.04% in Islamabad. A reduction in the area of barren mountains also occurred at an annual of 2.26% in Islamabad, while it increased by 4.16% in Rawalpindi. The amount of carbon stored in the reserved forests of Islamabad stood at 139.17 ± 12.15 Mg C/ha while that of Rawalpindi was 110.4 ± 13.79 Mg C/ha. In addition, total stored forest carbon was found to have decreased from 544.70 Gg C to 218.05 Gg C in Rawalpindi, while in Islamabad it increased from 2779.64 Gg C to 3548.16 Gg C. Investment in ecological urban planning, sustainable cities, and appropriate land-use planning is recommended to curb the degradation and conversion of the surrounding green areas of Rawalpindi and Islamabad

    Ecological Stoichiometry in Pinus massoniana L. Plantation: Increasing Nutrient Limitation in a 48-Year Chronosequence

    No full text
    Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) are considered indicators of nutrient status and ultimate ecosystem health. A detailed investigation of these elements in the leaves, branches, forest layer vegetation and soil, depending on stand age, was carried out. We investigated the effects of stand age (9-, 18-, 28-, and 48-year) on the aboveground plant parts (leaf, branch, herb, shrub, plant litter) and belowground pools (soil, roots) of P. massoniana plantations. The CNP stoichiometry of trees was affected by stand age. Mean N content in the aboveground parts in the nine-yr stand was greater than the other stands (18-, 28-, 48-yr), which decreased with increasing stand age. As stands aged, the nutrient demands of the plantations increased as well as their N:P ratios in soil. C content in the soil ranged from 30 to 105, the total N was 0.06 to 1.6, and the total P content ranged from 3.3–6.4 g kg−1. Soil C, N and P contents were greatly influenced by both stand age and soil depth, because surface soil sequester C and N more actively compared to deeper horizons, and more nutrients are released to the topsoil by the plant litter layer. Similarly, the ratios of other layers had a similar pattern as CNP because more nutrients were taken up by the plantations, decreasing nutrient supply in the deeper soil horizons. The green leaves N:P ratios (16) indicate limited growth of P. massoniana, as the range for global nutrient limitation for woody plants oscillated between 14–16, indicating N and P limitation. Young stands were observed to have greater P content and P resorption efficiency (56.9%–67.3%), with lower C:P and N:P ratios (704.4; 14.8). We conclude that with stand development, the nutrient demands of the plantations also increase, and soil N:P stoichiometry shows that these improve soil quality
    corecore