8 research outputs found

    Machine-learning Driven Synthesis of TiZrNbHfTaC5 High-Entropy Carbide

    Full text link
    Synthesis of high-entropy carbides (HEC) requires high temperatures that can be provided by electric arc plasma method. However, the formation temperature of a single-phase sample remains unknown. Moreover, under some temperatures multi-phase structures can emerge. In this work we developed an approach for a controllable synthesis of HEC TiZrNbHfTaC5 based on theoretical and experimental techniques. We used canonical Monte Carlo (CMC) simulations with the machine learning interatomic potentials to determine the temperature conditions for the formation of single-phase and multi-phase samples. In full agreement with the theory, the single-phase sample, produced with electric arc discharge, was observed at 2000 K. Below 1200 K the sample decomposed into (Ti-Nb-Ta)C and a mixture of (Zr-Hf-Ta)C, (Zr-Nb-Hf)C, (Zr-Nb)C, and (Zr-Ta)C. Our results demonstrate the conditions for the formation of HEC and we anticipate that our approach can pave the way towards targeted synthesis of multicomponent materials.Comment: 16 pages, 8 figure

    Analytical evaluation of energy efficiency potential enhancement of heat-generating units by flow variation in the boiler circuit

    No full text
    Three-dimensional models of the most common boiler schemes are developed and the hydraulic characteristic of each scheme is built. The calculation results of the main technical and economic indicators of the schemes are done. They are energy, metal consumption, capital costs and operating costs. According to the results of the analysis, there is a technical solution to reduce the energy consumption of the boiler circuit pumping equipment. The complex evaluation of the options in the context of the boiler manufacturer and operation is made, the investment attractiveness is calculated

    Droplet Spreading Process Impact on Ignition Characteristics of Condensed Materials

    No full text
    Mathematical simulation of condensed material solid-phase ignition in the context of the in-situ heating by the melted or heated to high temperature metal droplet was carried out. The authors developed the mathematical model that describes the heat transfer process in the “droplet – condensed material” system by the system of heat transfer equations with boundary and initial conditions. The problem is solved by the finite difference method. Four modes of condensed material ignition that are distinguished by the temperature range of every mode were identified for standard conditions of the in-situ heat effect

    Increase of energy efficiency in proportional adjusting of flow rate in the boiler circuit

    No full text
    The article presents the results of theoretical studies in the field of the boiler circuit operating modes for the boiler rooms operating by the independent heat supply scheme. The 3D model of a boiler circuit for a boiler room with 3 MW rated output was developed, based on which there was made an estimation of the boiler pump performance indicators. There is proposed a method for reducing energy costs for the operation of the pumping equipment of the boiler circuit

    Airflow mixing augmentation device for hot-air heating systems in modular boilers

    No full text
    The article demonstrates the results of the theoretical research devoted to the study of air flow interaction in hot-air heating systems of automatic modular boilers involving the use of fan heaters. The work quotes the results of mathematic simulation of various density air flows that are vertical to each other

    Airflow mixing augmentation device for hot-air heating systems in modular boilers

    No full text
    The article demonstrates the results of the theoretical research devoted to the study of air flow interaction in hot-air heating systems of automatic modular boilers involving the use of fan heaters. The work quotes the results of mathematic simulation of various density air flows that are vertical to each other

    Airflow mixing augmentation device for hot-air heating systems in modular boilers

    No full text
    The article demonstrates the results of the theoretical research devoted to the study of air flow interaction in hot-air heating systems of automatic modular boilers involving the use of fan heaters. The work quotes the results of mathematic simulation of various density air flows that are vertical to each other

    Machine learning-driven synthesis of TiZrNbHfTaC5 high-entropy carbide

    No full text
    Abstract Synthesis of high-entropy carbides (HEC) requires high temperatures that can be provided by electric arc plasma method. However, the formation temperature of a single-phase sample remains unknown. Moreover, under some temperatures multi-phase structures can emerge. In this work, we developed an approach for a controllable synthesis of HEC TiZrNbHfTaC5 based on theoretical and experimental techniques. We used Canonical Monte Carlo (CMC) simulations with the machine learning interatomic potentials to determine the temperature conditions for the formation of single-phase and multi-phase samples. In full agreement with the theory, the single-phase sample, produced with electric arc discharge, was observed at 2000 K. Below 1200 K, the sample decomposed into (Ti-Nb-Ta)C, and a mixture of (Zr-Hf-Ta)C, (Zr-Nb-Hf)C, (Zr-Nb)C, and (Zr-Ta)C. Our results demonstrate the conditions for the formation of HEC and we anticipate that our approach can pave the way towards targeted synthesis of multicomponent materials
    corecore