10 research outputs found

    Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons

    Get PDF
    A precise measurement of the neutron decay β\beta-asymmetry A0A_0 has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report A0=0.11966±0.000890.00140+0.00123A_0 = -0.11966 \pm 0.00089_{-0.00140}^{+0.00123}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon gA/gV=1.275900.00445+0.00409g_A/g_V = -1.27590_{-0.00445}^{+0.00409}.Comment: 5 pages, 2 figure

    The Precision nEDM Measurement with UltraCold Neutrons at TRIUMF

    Full text link
    The TRIUMF Ultra-Cold Advanced Neutron (TUCAN) collaboration aims at a precision neutron electric dipole moment (nEDM) measurement with an uncertainty of 1027ecm10^{-27}\,e\cdot\mathrm{cm}, which is an order-of-magnitude better than the current nEDM upper limit and enables us to test Supersymmetry. To achieve this precision, we are developing a new high-intensity ultracold neutron (UCN) source using super-thermal UCN production in superfluid helium (He-II) and a nEDM spectrometer. The current development status of them is reported in this article.Comment: Proceedings of the 24th International Spin Symposium (SPIN 2021), 18-22 October 2021, Matsue, Japa

    Precision pulse shape simulation for proton detection at the Nab experiment

    Full text link
    The Nab experiment at Oak Ridge National Laboratory, USA, aims to measure the beta-antineutrino angular correlation following neutron β\beta decay to an anticipated precision of approximately 0.1\%. The proton momentum is reconstructed through proton time-of-flight measurements, and potential systematic biases in the timing reconstruction due to detector effects must be controlled at the nanosecond level. We present a thorough and detailed semiconductor and quasiparticle transport simulation effort to provide precise pulse shapes, and report on relevant systematic effects and potential measurement schemes

    Final results for the neutron β-asymmetry parameter A₀ from the UCNA experiment

    Get PDF
    The UCNA experiment was designed to measure the neutron β-asymmetry parameter A0 using polarized ultracold neutrons (UCN). UCN produced via downscattering in solid deuterium were polarized via transport through a 7 T magnetic field, and then directed to a 1 T solenoidal electron spectrometer, where the decay electrons were detected in electron detector packages located on the two ends of the spectrometer. A value for A0 was then extracted from the asymmetry in the numbers of counts in the two detector packages. We summarize all of the results from the UCNA experiment, obtained during run periods in 2007, 2008–2009, 2010, and 2011–2013, which ultimately culminated in a 0.67% precision result for A₀

    Measurement of the neutron β\beta-asymmetry parameter A0A_0 with ultracold neutrons

    Full text link
    We present a detailed report of a measurement of the neutron β\beta-asymmetry parameter A0A_0, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T 2×2π2 \times 2\pi solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report A0=0.11966±0.000890.00140+0.00123A_0 = -0.11966 \pm 0.00089_{-0.00140} ^{+0.00123}, from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, λ=gA/gV=1.27590±0.002390.00377+0.00331\lambda = g_A/g_V = -1.27590 \pm 0.00239_{-0.00377}^{+0.00331}. Complete details of the analysis are presented.Comment: 54 pages, 41 figures, submitted to Phys. Rev.

    A spallation target at TRIUMF for fundamental neutron physics

    No full text
    Ultracold neutrons (UCNs) are a powerful tool for probing the Standard Model at high precision. The TRIUMF Ultracold Advanced Neutron (TUCAN) collaboration is building a new UCN source to provide unprecedented densities of UCNs for experiments. This source will use a tantalum-clad tungsten spallation target, receiving up to 40 µA of 480-MeV protons from TRIUMF’s main cyclotron. The beamline and target were constructed from 2014 to 2016 and operated at beam currents up to 10 µA from 2017 to 2019 as part of a prototype UCN source. We describe the design choices for the target and target-handling system, as well as our benchmarking of the target performance using UCN production measurements

    Final results for the neutron β-asymmetry parameter A0 from the UCNA experiment

    Get PDF
    The UCNA experiment was designed to measure the neutron β-asymmetry parameter A0 using polarized ultracold neutrons (UCN). UCN produced via downscattering in solid deuterium were polarized via transport through a 7 T magnetic field, and then directed to a 1 T solenoidal electron spectrometer, where the decay electrons were detected in electron detector packages located on the two ends of the spectrometer. A value for A0 was then extracted from the asymmetry in the numbers of counts in the two detector packages. We summarize all of the results from the UCNA experiment, obtained during run periods in 2007, 2008–2009, 2010, and 2011–2013, which ultimately culminated in a 0.67% precision result for A0

    Final results for the neutron β\beta-asymmetry parameter A0A_0 from the UCNA experiment

    No full text
    International audienceThe UCNA experiment was designed to measure the neutron β-asymmetry parameter A0 using polarized ultracold neutrons (UCN). UCN produced via downscattering in solid deuterium were polarized via transport through a 7 T magnetic field, and then directed to a 1 T solenoidal electron spectrometer, where the decay electrons were detected in electron detector packages located on the two ends of the spectrometer. A value for A0 was then extracted from the asymmetry in the numbers of counts in the two detector packages. We summarize all of the results from the UCNA experiment, obtained during run periods in 2007, 2008–2009, 2010, and 2011–2013, which ultimately culminated in a 0.67% precision result for A0
    corecore