9 research outputs found

    TD-DFT Simulation and Experimental Studies of a Mirrorless Lasing of Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-diphenylene-vinylene-2-methoxy-5-{2-ethylhexyloxy}-benzene)]

    No full text
    In this work, we investigate the TD-DFT simulation, optical, and mirrorless laser properties of conjugated polymer (CP) Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-diphenylene-vinylene-2-methoxy-5-{2-ethylhexyloxy}-benzene)], also known as (PFO-co-PPV-MEHB) or ADS125GE. TD-DFT calculations were performed for three monomer units with truncated tails using time-dependent density functional theory (TD-DFT) calculations. The calculations showed a highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) structure and a very high oscillator strength of 6.434 for the singlet-singlet transition at 374.43 nm. Experimentally, the absorption and fluorescence spectra were examined at various concentrations in verity of solvents, such as benzene, toluene, and hexane. The experimental results obtained in hexane were comparable with theoretical UV-VIS spectra calculated under vacuum. Amplified spontaneous emission (ASE) spectra peaked at approximately 509 nm for CO PFO-co-PPV-MEHB in solution and were obtained at suitable concentrations and pump energies. Additionally, the photochemical stability of this CP and coumarin (C510) were compared. Time-resolved spectroscopy (TRS) studies with a sub-nanosecond resolution were performed for the CO under various pump energies. These results showed the excited state dynamics and single-pass optical gain of CO PFO-co-PPV-MEHB

    Encapsulated Passivation of Perovskite Quantum Dot (CsPbBr3) Using a Hot-Melt Adhesive (EVA-TPR) for Enhanced Optical Stability and Efficiency

    No full text
    The notable photophysical characteristics of perovskite quantum dots (PQDs) (CsPbBr3) are suitable for optoelectronic devices. However, the performance of PQDs is unstable because of their surface defects. One way to address the instability is to passivate PQDs using different organic (polymers, oligomers, and dendrimers) or inorganic (ZnS, PbS) materials. In this study, we performed steady-state spectroscopic investigations to measure the photoluminescence (PL), absorption (A), transmission (T), and reflectance (R) of perovskite quantum dots (CsPbBr3) and ethylene vinyl acetate/terpene phenol (1%) (EVA-TPR (1%), or EVA) copolymer/perovskite composites in thin films with a thickness of 352 ± 5 nm. EVA is highly transparent because of its large band gap; furthermore, it is inexpensive and easy to process. However, the compatibility between PQDs and EVA should be established; therefore, a series of analyses was performed to compute parameters, such as the band gap, the coefficients of absorbance and extinction, the index of refractivity, and the dielectric constant (real and imaginary parts), from the data obtained from the above investigation. Finally, the optical conductivities of the films were studied. All these analyses showed that the EVA/PQDs were more efficient and stable both physically and optically. Hence, EVA/PQDs could become copolymer/perovskite active materials suitable for optoelectronic devices, such as solar cells and perovskite/polymer light-emitting diodes (PPLEDs)

    Broadband Frequency-Tunable Whispering-Gallery-Mode Superradiant Light from Quantum Dots in Colloidal Solution

    No full text
    We examine superradiant (SR) light or amplified spontaneous emission (ASE) from a whispering-gallery-mode (WGM) laser comprising various sized (CdSe) ZnS quantum dots (QDs) in colloidal liquid. Laser-induced fluorescence (LIF) with a full width at half maximum (FWHM) of 40 nm is observed when the colloidal QD system is pumped with 2 mJ of laser light at 355 nm (3rd harmonic of Nd:YAG laser). Under optimal conditions of pump energy and focusing, ASE at 520 nm with a bandwidth of Δλ=8 nm (FWHM) and divergence of 9 mrad is observed. When the QDs are embedded on a high-Q factor silica microsphere ((functionalized with an amine), SMA), they generate WGMs with random peak distributions. Finally, when all the QDs embedded in SMAs are mixed and placed in a cuvette, we obtain a “WGM laser” that is almost continuously tunable from 520 nm to 630 nm with a spectral width less than 2 nm (FWHM) in the WGM and less than 1.2 nm in the cavity mode. We believe that this is the first report on a frequency tunable laser obtained using (CdSe) ZnS QDs embedded in an SMA, exhibiting an efficiency of 0.06%

    Evaluating the Effects of Metallic Waste on the Structural and Gamma-Ray Shielding Properties of Epoxy Composites

    No full text
    The objective of the research is to develop novel materials that are both inexpensive and have a low density, while also being able to endure the transportation of γ-photons with low-to-medium energy levels. The outcome consisted of four epoxy resins that were strengthened with different quantities of heavy metallic waste. The density of the formed composites improved from 1.134 ± 0.022 g/cm3 to 1.560 ± 0.0312 g/cm3 when the waste content was raised from 0 to 40 weight percent. The theoretical investigation was determined using Monte Carlo (MCNP) simulation software, and the results of linear attenuation coefficient were justified experimentally in a low and medium energy range of 15–662 keV. The mass attenuation coefficient results in a low gamma energy range (15–122 keV) varied in between 3.175 and 0.159 cm2/g (for E-MW0 composite) and in between 8.212 and 0.164 cm2/g (for E-MW40 composite). The decrease in mass attenuation coefficient was detected in a medium gamma photon energy range (122–662 keV) with 0.123–0.082 cm2/g (for E-MW0 composite) and 0.121–0.080 cm2/g (for E-MW40 composite). The density of the enhanced composites influenced these parameters. As the metallic waste composition increased, the fabricated composites’ half-value thickness decreased. At 15 keV, the half-value thickness decreased from 0.19 to 0.05 cm. At 59 keV, it fell from 2.70 to 1.41 cm. At 122 keV, it fell from 3.90 to 2.72 cm. At 662 keV, it fell from 7.45 to 5.56 cm. This decrease occurred as the heavy metal waste concentration increased from 0 to 40 wt.%. The study indicates that as metallic waste concentrations rise, there is a rise in the effective atomic number and a decline in the buildup factors

    Optically Pumped Intensive Light Amplification from a Blue Oligomer

    No full text
    We demonstrated the time-resolved dynamics of laser action from the conductive oligomer (CO) 1,4-Bis(9-ethyl-3-carbazo-vinylene)-9,9-dihexyl-fluorene (BECV-DHF). Absorption and fluorescence spectra were studied for BECV-DHF in different solvents under a wide range of concentrations. The Fourier-transform infrared spectroscopy (FTIR) spectrum was measured using simulation and experiments. The Ultraviolet-Visible (UV-VIS) spectra of the BECV-DHF were simulated in two different solutions. This CO formed a dimer and had two vibration bands in nonpolar solvents, partially dissolved in polar protic solvents, and created an H-type aggregate in polar aprotic solvents. BECV-DHF produced amplified spontaneous emission (ASE) at 464 nm in many solvents. The high efficiency of ASE is due to the waveguiding and self-assembly nature of the oligomer, which is very rare for optically pumped systems. However, BECV-DHF did not produce ASE in polar protic solvents. BECV-DHF produced ASE in both longitudinal and transverse pumping, and the full-width half maximum (FWHM) was 4 nm and 8 nm respectively for different solvents, such as toluene and acetone. The CO had a very low threshold pump energy (~0.5 mJ). The ASE efficiency was approximately 20%. The time-resolved spectroscopy (TRS) studies showed a temporal Gaussian-shaped ASE output from this CO. BECV-DHF shows remarkably high stability compare to the conjugated polymer (CP) PFO-co-pX

    A Temperature-Tunable Thiophene Polymer Laser

    No full text
    This paper reports a temperature-tunable conjugated polymer poly[3-(2-ethyl-isocyanato-octadecanyl)-thiophene] (TCP) laser working in superradiant (SR)—or amplified spontaneous emission (ASE)—mode. The absorption spectra indicated the aggregate (mostly dimer) formation upon increasing concentration and/or decreasing temperature. Amplified spontaneous emission (ASE) was observed at suitable concentration, temperature, and pump energy values. The efficiency of the ASE from the TCP polymer was improved by energy transfer from an oligomer [1,4-bis(9-ethyl-3-carbazo-vinylene)-9,9-dihexyl-fluorene]. Moreover, the ASE wavelength can be tuned between 550 and 610 nm by changing the temperature of the solution from 60 to 10 °C. To the best of our knowledge, this is the first report of a high-power, temperature-tunable, and conjugated polymer laser

    Using a Spectrofluorometer for Resonance Raman Spectra of Organic Molecules

    No full text
    Scattering (Rayleigh and Raman) and fluorescence are two common light signals that frequently occur together, confusing the researchers and graduate students experimenting in molecular spectroscopy laboratories. This report is a brief study presenting a clear discrimination between the two signals mentioned, employing a common spectrofluorometer such as the PerkinElmer LS 55. Even better, the resonance Raman signal of a molecule (e.g., acetone) can be obtained elegantly using the same instrument

    Rod-Shaped Carbon Aerogel-Assisted CdS Nanocomposite for the Removal of Methylene Blue Dye and Colorless Phenol

    No full text
    A carbon aerogel (CA)-assisted CdS nanocomposite was prepared by hydrothermal process and was investigated as a photocatalyst towards the photodegradation of methylene blue (MB) dye and colorless phenol under visible light irradiation (VLI). CdS have attracted wide attention due to their relatively narrow band gap for the visible light effect and the suitably negative potential of the conduction band (CB) edge for the neutralization of H+ ions. The obtained characterization results suggest that the CA-assisted CdS nanocomposite has enhanced photophysical properties, a more surface area, and the desired morphology at the nm scale. Under optimization, CdS CA 8% shows superior catalytic activity for degradation compared with other samples. The photocatalytic activities of the as-synthesized samples were examined under VLI through the MB and phenol degradation. Compared with pure CA and CdS, the CA (8%)-assisted CdS nanoparticles (NPs) offer significantly enhanced photocatalytic efficiency for MB and phenol. The mechanism of photocatalytic reaction was examined by adding various scavengers, and the results revealed that the holes generated in CA (8%)-assisted CdS NPs have a crucial impact on the visible light photocatalytic process. The improved photocatalytic degradation was due to the strong interaction between the CA and CdS NPs

    Enhanced Electrocatalytic Oxygen Reduction Reaction of TiO<sub>2</sub> Nanotubes by Combining Surface Oxygen Vacancy Engineering and Zr Doping

    No full text
    This work examines the cooperative effect between Zr doping and oxygen vacancy engineering in anodized TiO2 nanotubes (TNTs) for enhanced oxygen reduction reactions (ORRs). Zr dopant and annealing conditions significantly affected the electrocatalytic characteristics of grown TNTs. Zr doping results in Zr4+ substituted for Ti4+ species, which indirectly creates oxygen vacancy donors that enhance charge transfer kinetics and reduce carrier recombination in TNT bulk. Moreover, oxygen vacancies promote the creation of unsaturated Ti3+(Zr3+) sites at the surface, which also boosts the ORR interfacial process. Annealing at reductive atmospheres (e.g., H2, vacuum) resulted in a larger increase in oxygen vacancies, which greatly enhanced the ORR activity. In comparison to bare TNTs, Zr doping and vacuum treatment (Zr:TNT–Vac) significantly improved the conductivity and activity of ORRs in alkaline media. The finding also provides selective hydrogen peroxide production by the electrochemical reduction of oxygen
    corecore