5 research outputs found
Myeloid-Derived Suppressor Cells and Pancreatic Cancer: Implications in Novel Therapeutic Approaches
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating human malignancy with poor prognosis and low survival rates. Several cellular mechanisms have been linked with pancreatic carcinogenesis and also implicated in inducing tumor resistance to known therapeutic regimens. Of various factors, immune evasion mechanisms play critical roles in tumor progression and impeding the efficacy of cancer therapies including PDAC. Among immunosuppressive cell types, myeloid-derived suppressor cells (MDSCs) have been extensively studied and demonstrated to not only support PDAC development but also hamper the anti-tumor immune responses elicited by therapeutic agents. Notably, recent efforts have been directed in devising novel approaches to target MDSCs to limit their effects. Multiple strategies including immune-based approaches have been explored either alone or in combination with therapeutic agents to target MDSCs in preclinical and clinical settings of PDAC. The current review highlights the roles and mechanisms of MDSCs as well as the implications of this immunomodulatory cell type as a potential target to improve the efficacy of therapeutic regimens for PDAC
Myeloid-Derived Suppressor Cells and Pancreatic Cancer: Implications in Novel Therapeutic Approaches
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating human malignancy with poor prognosis and low survival rates. Several cellular mechanisms have been linked with pancreatic carcinogenesis and also implicated in inducing tumor resistance to known therapeutic regimens. Of various factors, immune evasion mechanisms play critical roles in tumor progression and impeding the efficacy of cancer therapies including PDAC. Among immunosuppressive cell types, myeloid-derived suppressor cells (MDSCs) have been extensively studied and demonstrated to not only support PDAC development but also hamper the anti-tumor immune responses elicited by therapeutic agents. Notably, recent efforts have been directed in devising novel approaches to target MDSCs to limit their effects. Multiple strategies including immune-based approaches have been explored either alone or in combination with therapeutic agents to target MDSCs in preclinical and clinical settings of PDAC. The current review highlights the roles and mechanisms of MDSCs as well as the implications of this immunomodulatory cell type as a potential target to improve the efficacy of therapeutic regimens for PDAC
Myeloid-Derived Suppressor Cells and Pancreatic Cancer: Implications in Novel Therapeutic Approaches
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating human malignancy with poor prognosis and low survival rates. Several cellular mechanisms have been linked with pancreatic carcinogenesis and also implicated in inducing tumor resistance to known therapeutic regimens. Of various factors, immune evasion mechanisms play critical roles in tumor progression and impeding the efficacy of cancer therapies including PDAC. Among immunosuppressive cell types, myeloid-derived suppressor cells (MDSCs) have been extensively studied and demonstrated to not only support PDAC development but also hamper the anti-tumor immune responses elicited by therapeutic agents. Notably, recent efforts have been directed in devising novel approaches to target MDSCs to limit their effects. Multiple strategies including immune-based approaches have been explored either alone or in combination with therapeutic agents to target MDSCs in preclinical and clinical settings of PDAC. The current review highlights the roles and mechanisms of MDSCs as well as the implications of this immunomodulatory cell type as a potential target to improve the efficacy of therapeutic regimens for PDAC
Myeloid-Derived Suppressor Cells and Pancreatic Cancer: Implications in Novel Therapeutic Approaches
Combining Ability and Gene Action Controlling Agronomic Traits for Cytoplasmic Male Sterile Line, Restorer Lines, and New Hybrids for Developing of New Drought-Tolerant Rice Hybrids
This study aimed to identify new rice lines and hybrids that are tolerant to water deficit and produce high yields under water stress conditions. A line × tester mating design was used to study the lines and testers’ general combining ability (GCA) effects. The specific combining ability (SCA) of the hybrid rice combinations was measured under three different irrigation regimes; 6, 9, and 12 days. The study was carried out at the experimental farm of Sakha Agricultural Research Station, Sakha, Kafr El-Sheikh, Egypt, during the 2018 and 2019 rice growing seasons. Due to the genotypes and their partitions to the parents and the crosses, the mean squares were highly significant for all studied traits under the three irrigation regimes. The additive gene effects play an important role in expressing most of the studied traits. Therefore, the selection procedures based on the accumulation of the additive effect would be successful at improving these traits and the grain yield. The cytoplasmic male sterile (CMS) line G46A (L1) was the best combiner for most yield component traits in the three irrigation regimes. The newly devolved restorer lines T11, T1, T2, T5, T4, and T3, as well as the new hybrids L2 × T10, L2 × T6, L1 × T7, L1 × T5, L1 × T3, L2 × T7, L2 × T9, L2 × T8, L2 × T4, L1 × T4, L2 × T2, L1 × T8, L1 × T9, and L2 × NRL 10, showed good, desirable values of the studied traits such as earliness of flowering, short plant height, number of panicles/plant, panicle length, number of spikelets/panicle, number of filled grains/panicle, panicle weight, 1000-grain weight, hulling percentage, milling percentage, head rice percentage, and grain yield under the irrigation regimes of 6, 9, and 12 days. The hybrids L2 × T10, L2 × T6, L1 × T7, and L1 × T5, showed significant positive SCA effects for grain yield, under all three irrigation regimes