27 research outputs found
Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.
BackgroundSkin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.ObjectiveThe goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.MethodsHigh fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.ResultsHigh fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched controls, respectively. These LED-RL associated increases in ROS were prevented by pretreating cells with 0.0001% or 0.001% resveratrol. Next, we quantified the effect of hydrogen peroxide (H2O2)-associated ROS on fibroblast migration speed, and found that while H2O2-associated ROS significantly decreased relative fibroblast migration speed, pretreatment with 0.0001% or 0.001% resveratrol significantly prevented the decreases in migration speed. Furthermore, we found that LED-RL at 480, 640 and 800 J/cm2 decreased fibroblast migration speed to 83.0%, 74.4%, and 68.6% relative to matched controls, respectively. We hypothesized that these decreases in fibroblast migration speed were due to associated increases in ROS generation. Pretreatment with 0.0001% and 0.001% resveratrol prevented the LED-RL associated decreases in migration speed.ConclusionHigh fluence LED-RL increases ROS and is associated with decreased fibroblast migration speed. We provide mechanistic support that the decreased migration speed associated with high fluence LED-RL is mediated by ROS, by demonstrating that resveratrol prevents high fluence LED-RL associated migration speed change. These data lend support to an increasing scientific body of evidence that high fluence LED-RL has anti-fibrotic properties. We hypothesize that our findings may result in a greater understanding of the fundamental mechanisms underlying visible light interaction with skin and we anticipate clinicians and other researchers may utilize these pathways for patient benefit
Stereoretentive post-translational protein editing
Chemical post-translational methods allow convergent side-chain editing of proteins without needing to resort to genetic intervention. Current approaches that allow the creation of constitutionally native side chains via C–C bond formation, using off-protein carbon-centered C· radicals added to unnatural amino acid radical acceptor (SOMOphile, singly occupied molecular orbital (SOMO)) “tags” such as dehydroalanine, are benign and wide-ranging. However, they also typically create epimeric mixtures of d/l-residues. Here, we describe a light-mediated desulfurative method that, through the creation and reaction of stereoretained on-proteinl-alanyl Cβ· radicals, allows Cβ–Hγ, Cβ–Oγ, Cβ–Seγ, Cβ–Bγ, and Cβ–Cγ bond formation to flexibly generate site-selectively edited proteins with full retention of native stereochemistry under mild conditions from a natural amino acid precursor. This methodology shows great potential to explore protein side-chain diversity and function and in the construction of useful bioconjugates
L'Écho : grand quotidien d'information du Centre Ouest
14 avril 19141914/04/14 (A43)-1914/04/15.Appartient à l’ensemble documentaire : PoitouCh
MicroRNA expression analysis of human skin fibroblasts treated with high‐fluence light‐emitting diode‐red light
Skin fibrosis is a chronic debilitating feature of several skin diseases that lead to characteristic increases in dermal fibroblast proliferation and collagen deposition through upregulation in components of the transforming growth factor beta (TGF-B)/SMAD pathway. In contrast to ultraviolet phototherapy, high-fluence light-emitting diode-generated red light (HF-LED-RL, 633 ± 15 nm) is a safe, economic and non-invasive therapy with in vitro evidence that supports modulation of the key cellular characteristics involved in the pathogenesis of skin fibrosis. Limited data exists pertaining to the effects of HF-LED-RL on human skin fibroblast microRNA (miRNA). Herein, we explored the effects of HF-LED-RL on fibroblast miRNA levels using RNA-seq and miRNA expression analysis. Using RNA-seq analysis we found that HF-LED-RL at 320 and 640 J/cm2 increased transcription of key miRNA that are involved in skin fibrosis including miRNA-29, miRNA-196a and Let-7a, and decreased transcription of miRNA-21, miRNA-23b and miRNA-31. These microRNA findings provide insight into the molecular underpinnings of HF-LED-RL and highlight potential therapeutic targets of interest for the treatment of skin fibrosis. Additional research on the specific molecular mechanisms underlying HF-LED-RL effects on fibroblasts may provide further mechanistic insight into this therapy and may reveal additional future therapeutic targets for skin fibrosis
Inhibition of fibroblast proliferation in vitro using red light-emitting diodes
Red light is part of the visible light spectrum. The effects of light-emitting diode (LED)-generated red light on human skin are not well-characterized.
To study the effect of red LED-generated low-level light therapy (LLLT) on fibroblast proliferation and viability in vitro.
Irradiation of normal human skin fibroblasts using red LED panels was performed in vitro, and modulation of proliferation and viability was quantified using trypan blue dye exclusion assay.
Statistically significant decreases in cell proliferation were noted at the following fluences (time): 160 J/cm2 (30 minutes, 34 seconds), 320 J/cm2 (61 minutes, 07 seconds) and 640 J/cm2 (122 minutes, 14 seconds) (Figure 1). Irradiation at the 160- (98.5 ± 1.2%) and 320-J/cm2 (98.0 ± 3.1%) doses did not significantly alter viability.
At certain fluences, red LLLT can effectively inhibit fibroblast proliferation in vitro without altering viability and holds promise for the treatment of scars and other proliferative skin diseases
Recommended from our members
The Role of Subtractive Color Mixing in the Perception of Blue Nevi and Veins-Beyond the Tyndall Effect.
Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration
Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.The goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched controls, respectively. These LED-RL associated increases in ROS were prevented by pretreating cells with 0.0001% or 0.001% resveratrol. Next, we quantified the effect of hydrogen peroxide (H2O2)-associated ROS on fibroblast migration speed, and found that while H2O2-associated ROS significantly decreased relative fibroblast migration speed, pretreatment with 0.0001% or 0.001% resveratrol significantly prevented the decreases in migration speed. Furthermore, we found that LED-RL at 480, 640 and 800 J/cm2 decreased fibroblast migration speed to 83.0%, 74.4%, and 68.6% relative to matched controls, respectively. We hypothesized that these decreases in fibroblast migration speed were due to associated increases in ROS generation. Pretreatment with 0.0001% and 0.001% resveratrol prevented the LED-RL associated decreases in migration speed.High fluence LED-RL increases ROS and is associated with decreased fibroblast migration speed. We provide mechanistic support that the decreased migration speed associated with high fluence LED-RL is mediated by ROS, by demonstrating that resveratrol prevents high fluence LED-RL associated migration speed change. These data lend support to an increasing scientific body of evidence that high fluence LED-RL has anti-fibrotic properties. We hypothesize that our findings may result in a greater understanding of the fundamental mechanisms underlying visible light interaction with skin and we anticipate clinicians and other researchers may utilize these pathways for patient benefit
Diffuse lamellar keratitis associated with tabletop autoclave biofilms: case series and review
PurposeTo report a diffuse lamellar keratitis (DLK) cluster attributed to autoclave reservoir biofilm and to review the risk and prevention of DLK and toxic anterior segment syndrome (TASS) caused by such biofilms.SettingRefractive Surgery Center, University of California, Berkeley.DesignObservational case-control study and review of literature.MethodsEyes were evaluated for DLK following laser in situ keratomileusis (LASIK) over a 5-year period. Multiple changes in surgical and operating room protocols were prompted by a cluster of DLK cases. The autoclave reservoir chamber wall was cultured for microbial contamination. The MEDLINE database was used to identify relevant past publications.ResultsFrom January 7, 2010, to December 18, 2014, 1115 eyes received LASIK. Between September 2, 2010, and June 11, 2012, 147 eyes of 395 LASIK cases developed DLK (37.2%). Systematic modifications in surgical protocols were unsuccessful in ending the prolonged cluster of DLK cases until the STATIM 2000 autoclave was replaced with a new STATIM autoclave and a reservoir sterilization and surveillance protocol implemented. Over the subsequent 30 months, DLK incidence was reduced to 2.2% (14 DLK cases from 632 total LASIK cases, P < .0001). The retired autoclave reservoir chamber wall cultures grew Pseudomonas aeruginosa and the Burkholderia cepacia complex.ConclusionsFluid reservoirs of tabletop steam autoclaves can readily develop polymicrobial biofilms harboring microbial pathogens, whose inert molecular byproducts can cause DLK and TASS when introduced to the eye by surgical instruments. Stringent reservoir cleaning and maintenance may significantly reduce this risk by preventing and removing these biofilms