133 research outputs found

    Investigation of an N5-glutamine methyltranferase, a novel partner of α2-chimaerin

    Get PDF
    Differentiating neurones respond to extracellular signalling cues that affect the actin cytoskeleton and influence the outgrowth and retraction of cellular processes. Rac1 belongs to the family of Rho GTPases that play a key role in actin organisation during neuronal development. Rac1 promotes lamellipodia formation and neurite outgrowth, and is also involved in axonal retraction pathways. α2-Chimaerin down-regulates Rac1 and is involved in neuronal plasticity and axonal guidance through a wide spectrum of interacting partners. The N5-glutamine methyltransferase HemK1 was previously identified in our lab as a novel interacting partner of α2-chimaerin, in a yeast two-hybrid screen. The aim of this study was to characterise HemK1 and investigate its role in neurite outgrowth. N5-glutamine methyltransferases are universally conserved in nature and little studied in vertebrates. HemK1 and related protein HemK2 are implicated in the control of translation termination by methylating the polypeptide chain release factors, a modification that mediates efficient translation termination in their bacterial and yeast homologues. Analyses of their transcript levels in rat embryonic brains by quantitative real-time PCR indicated that both HemK1 and HemK2 are expressed at comparable levels to α2-chimaerin in the brain and also in hippocampal neurones. HemK1 monoclonal antibodies detected an endogenous protein in brain mitochondrial fractions, but not in cytosol. When over-expressed, HemK1 co-localised with its proposed mitochondrial substrate mtRF1a in cells and also exhibited partial colocalisation with Dcp1b, a component of the mRNA decay machinery. Both HemK1 and HemK2 associated with α2-chimaerin, as well as with their proposed substrates, mtRF1a and eRF1. α2-Chimaerin influences neuronal morphology and dendritic pruning. ShRNA knock-down of HemK1 or HemK2 in primary rat hippocampal neurones in culture promoted increased branching and complexity of neurites as assessed by confocal microscopy and Sholl analysis. These results suggest a novel link between translational control mechanisms and Rac signalling pathways in developing neurones

    Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass

    Get PDF
    We have applied bioluminescent ATP detection methods to microbial enumeration in Antarctic Dry Valley mineral soils, and validated our ATP data by two independent methods. We have demonstrated that ATP measurement is a valid means of determining microbial biomass in such sites, and that the desiccated surface mineral soils of the Antarctic Dry Valleys contain cell numbers over four orders of magnitude higher than previously suggeste

    Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo

    Get PDF
    The most common mutation in the Leucine-rich repeat kinase 2 gene (LRRK2), G2019S, causes familial Parkinson's Disease (PD) and renders the encoded protein kinase hyperactive. While targeting LRRK2 activity is currently being tested in clinical trials as a therapeutic avenue for PD, to date, the molecular effects of chronic LRRK2 inhibition have not yet been examined in vivo. We evaluated the utility of newly available phospho-antibodies for Rab substrates and LRRK2 autophosphorylation to examine the pharmacodynamic response to treatment with the potent and specific LRRK2 inhibitor, MLi-2, in brain and peripheral tissue in G2019S LRRK2 knock-in mice. We report higher sensitivity of LRRK2 autophosphorylation to MLi-2 treatment and slower recovery in washout conditions compared to Rab GTPases phosphorylation, and we identify pS106 Rab12 as a robust readout of downstream LRRK2 activity across tissues. The downstream effects of long-term chronic LRRK2 inhibition in vivo were evaluated in G2019S LRRK2 knock-in mice by phospho- and total proteomic analyses following an in-diet administration of MLi-2 for 10 weeks. We observed significant alterations in endolysosomal and trafficking pathways in the kidney that were sensitive to MLi-2 treatment and were validated biochemically. Furthermore, a subtle but distinct biochemical signature affecting mitochondrial proteins was observed in brain tissue in the same animals that, again, was reverted by kinase inhibition. Proteomic analysis in the lung did not detect any major pathway of dysregulation that would be indicative of pulmonary impairment. This is the first study to examine the molecular underpinnings of chronic LRRK2 inhibition in a preclinical in vivo PD model and highlights cellular processes that may be influenced by therapeutic strategies aimed at restoring LRRK2 physiological activity in PD patients

    Differential LRRK2 signalling and gene expression in WT-LRRK2 and G2019S- LRRK2 mouse microglia treated with zymosan and MLi2

    Get PDF
    INTRODUCTION: Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene cause autosomal dominant Parkinson’s disease (PD) with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggest involvement of microglia and macrophages in inflammation related to PD. LRRK2 is known to respond to extracellular signalling including TLR4 resulting in alterations in gene expression, with the response to TLR2 signalling through zymosan being less known. METHODS: Here, we investigated the effects of zymosan, a TLR2 agonist and the potent and specific LRRK2 kinase inhibitor MLi-2 on gene expression in microglia from LRRK2-WT and LRRK2 p.G2019S knock-in mice by RNA-Sequencing analysis. RESULTS: We observed both overlapping and distinct zymosan and MLi-2 mediated gene expression profiles in microglia. At least two candidate Genome-Wide Association (GWAS) hits for PD, CathepsinB (Ctsb) and Glycoprotein-nmb (Gpnmb), were notably downregulated by zymosan treatment. Genes involved in inflammatory response and nervous system development were up and downregulated respectively with zymosan treatment while MLi-2 treatment particularly exhibited upregulated genes for ion transmembrane transport regulation. Furthermore, we observed the top twenty most significantly differentially expressed genes in LRRK2 p.G2019S microglia show enriched biological processes in iron transport and response to oxidative stress. DISCUSSION: Overall, these results suggest that microglial LRRK2 may contribute to PD pathogenesis through altered inflammatory pathways. Our findings should encourage future investigations of these putative avenues in the context of PD pathogenesis

    mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition

    Get PDF
    Unc-51 Like Kinase 1 (ULK1) is a critical regulator of the biogenesis of autophagosomes, the central component of the catabolic macroautophagy pathway. Regulation of ULK1 activity is dependent upon several phosphorylation events acting to repress or activate the enzymatic function of this protein. Phosphorylation of Ser758 ULK1 has been linked to repression of autophagosome biogenesis and was thought to be exclusively dependent upon mTOR complex 1 kinase activity. In this study, a novel regulation of Ser758 ULK1 phosphorylation is reported following prolonged inhibition of the Parkinson's disease linked protein Leucine Rich Repeat Kinase 2 (LRRK2). Here, modulation of Ser758 ULK1 phosphorylation following LRRK2 inhibition is decoupled from the repression of autophagosome biogenesis and independent of mTOR complex 1 activity

    Divergent α-synuclein solubility and aggregation properties in G2019S LRRK2 Parkinson's disease brains with Lewy Body pathology compared to idiopathic cases.

    Get PDF
    Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). The most prevalent LRRK2 mutation is the G2019S coding change, located in the kinase domain of this complex multi-domain protein. The majority of G2019S autopsy cases feature typical Lewy Body pathology with a clinical phenotype almost indistinguishable from idiopathic PD (iPD). Here we have investigated the biochemical characteristics of α-synuclein in G2019S LRRK2 PD post-mortem material, in comparison to pathology-matched iPD. Immunohistochemistry with pS129 α-synuclein antibody showed that the medulla is heavily affected with pathology in G2019S PD whilst the basal ganglia (BG), limbic and frontal cortical regions demonstrated comparable pathology scores between G2019S PD and iPD. Significantly lower levels of the highly aggregated α-synuclein species in urea-SDS fractions were observed in G2019S cases compared to iPD in BG and limbic cortex. Our data, albeit from a small number of cases, highlight a difference in the biochemical properties of aggregated α-synuclein in G2019S linked PD compared to iPD, despite a similar histopathological presentation. This divergence in solubility is most notable in the basal ganglia, a region that is affected preclinically and is damaged before overt dopaminergic cell death

    Phosphorylation of 4E-BP1 in the mammalian brain is not altered by LRRK2 expression or pathogenic mutations.

    Get PDF
    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of autosomal dominant familial Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase enzymatic domains. Disease-associated mutations in LRRK2 variably influence enzymatic activity with the common G2019S variant leading to enhanced kinase activity. Mutant LRRK2 induces neuronal toxicity through a kinase-dependent mechanism suggesting that kinase activity is important for mediating the pathogenic effects of LRRK2 mutations. A number of LRRK2 kinase substrates have been identified in vitro but whether they represent authentic physiological substrates in mammalian cells or tissues is not yet clear. The eukaryotic initiation factor 4E (eIF4E)-binding protein, 4E-BP1, was recently identified as a potential substrate of LRRK2 kinase activity in vitro and in Drosophila with phosphorylation occurring at Thr37 and Thr46. Here, we explore a potential interaction of LRRK2 and 4E-BP1 in mammalian cells and brain. We find that LRRK2 can weakly phosphorylate 4E-BP1 in vitro but LRRK2 overexpression is not able to alter endogenous 4E-BP1 phosphorylation in mammalian cells. In mammalian neurons LRRK2 and 4E-BP1 display minimal co-localization, whereas the subcellular distribution, protein complex formation and covalent post-translational modification of endogenous 4E-BP1 are not altered in the brains of LRRK2 knockout or mutant LRRK2 transgenic mice. In the brain, the phosphorylation of 4E-BP1 at Thr37 and Thr46 does not change in LRRK2 knockout or mutant LRRK2 transgenic mice, nor is 4E-BP1 phosphorylation altered in idiopathic or G2019S mutant PD brains. Collectively, our results suggest that 4E-BP1 is neither a major nor robust physiological substrate of LRRK2 in mammalian cells or brain
    • …
    corecore