3,320 research outputs found

    Environment effects on the electric conductivity of the DNA

    Get PDF
    We present a theoretical analysis of the environment effects on charge transport in double-stranded synthetic poly(G)-poly(C) DNA molecules attached to two ideal leads. Coupling of the DNA to the environment results in two effects: (i) localization of carrier functions due to the static disorder and (ii) phonon-induced scattering of the carrier between these localized states, resulting in hopping conductivity. A nonlinear Pauli master equation for populations of localized states is used to describe the hopping transport and calculate the electric current as a function of the applied bias. We demonstrate that, although the electronic gap in the density of states shrinks as the disorder increases, the voltage gap in the IVI-V characteristics becomes wider. Simple physical explanation of this effect is provided.Comment: 8 pages, 2 figures, to appear in J. Phys.: Condens. Matte

    Photon recoil momentum in a Bose-Einstein condensate of a dilute gas

    Get PDF
    We develop a "minimal" microscopic model to describe a two-pulse-Ramsay-interferometer-based scheme of measurement of the photon recoil momentum in a Bose-Einstein condensate of a dilute gas [Campbell et al., Phys. Rev. Lett. 94, 170403 (2005)]. We exploit the truncated coupled Maxwell-Schroedinger equations to elaborate the problem. Our approach provides a theoretical tool to reproduce essential features of the experimental results. Additionally, we enable to calculate the quantum-mechanical mean value of the recoil momentum and its statistical distribution that provides a detailed information about the recoil event.Comment: 6 pages, 4 figure

    On the Exponential Decay of the n-point Correlation Functions and the Analyticity of the Pressure

    Full text link
    The goal of this paper is to provide estimates leading to a direct proof of the exponential decay of the n-point correlation functions for certain unbounded models of Kac type. The methods are based on estimating higher order derivatives of the solution of the Witten Laplacian equation on one forms associated with the hamiltonian of the system. We also provide a formula for the Taylor coefficients of the pressure that is suitable for a direct proof the analyticity

    Nonlinear resonance reflection from and transmission through a dense glassy system built up of oriented linear Frenkel chains: two-level models

    Get PDF
    A theoretical study of the resonance optical response of assemblies of oriented short (as compared to an optical wavelength) linear Frenkel chains is carried out using a two-level model. We show that both transmittivity and reflectivity of the film may behave in a bistable fashion and analyze how the effects found depend on the film thickness and on the inhomogeneous width of the exciton optical transition.Comment: 26 pages, 9 figure

    Statistics of low-energy levels of a one-dimensional weakly localized Frenkel exciton: A numerical study

    Get PDF
    Numerical study of the one-dimensional Frenkel Hamiltonian with on-site randomness is carried out. We focus on the statistics of the energy levels near the lower exciton band edge, i. e. those determining optical response. We found that the distribution of the energy spacing between the states that are well localized at the same segment is characterized by non-zero mean, i.e. these states undergo repulsion. This repulsion results in a local discrete energy structure of a localized Frenkel exciton. On the contrary, the energy spacing distribution for weakly overlapping local ground states (the states with no nodes within their localization segments) that are localized at different segments has zero mean and shows almost no repulsion. The typical width of the latter distribution is of the same order as the typical spacing in the local discrete energy structure, so that this local structure is hidden; it does not reveal itself neither in the density of states nor in the linear absorption spectra. However, this structure affects the two-exciton transitions involving the states of the same segment and can be observed by the pump-probe spectroscopy. We analyze also the disorder degree scaling of the first and second momenta of the distributions.Comment: 10 pages, 6 figure

    Localization properties of a one-dimensional tight-binding model with non-random long-range inter-site interactions

    Get PDF
    We perform both analytical and numerical studies of the one-dimensional tight-binding Hamiltonian with stochastic uncorrelated on-site energies and non-fluctuating long-range hopping integrals . It was argued recently [A. Rodriguez at al., J. Phys. A: Math. Gen. 33, L161 (2000)] that this model reveals a localization-delocalization transition with respect to the disorder magnitude provided . The transition occurs at one of the band edges (the upper one for and the lower one for). The states at the other band edge are always localized, which hints on the existence of a single mobility edge. We analyze the mobility edge and show that, although the number of delocalized states tends to infinity, they form a set of null measure in the thermodynamic limit, i.e. the mobility edge tends to the band edge. The critical magnitude of disorder for the band edge states is computed versus the interaction exponent by making use of the conjecture on the universality of the normalized participation number distribution at transition.Comment: 7 pages, 6 postscript figures, uses revtex

    Pauli-Villars Regularization in nonperturbative Hamiltonian approach on the Light Front

    Full text link
    The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar λφ4\lambda\varphi^4 field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.Comment: LaTeX, 10 pages, 2 figures. Article will be published in AIP Conference Proceedings, the final publication will be available at http://scitation.aip.org/content/aip/proceeding/aipc
    corecore