8 research outputs found

    Virulence Genes In Isolates Of Escherichia Coli From Samples Of Milk And Feces From Dairy Cattle

    No full text
    The aim of this work was to determine if Escherichia coli isolates carrying the virulence genes eae and eltB and exhibiting the Ehly phenotype are present in feces and milk samples from healthy dairy cattle on farms. Isolates from calves showed a statistically higher prevalence of eae and eltB compared with isolates from older animals. The other factors tested (stx1, stx 2, and Ehly) were not statistically different between the two groups. Two isolates originating from calf feces were identified as serotype O157:H7; one of these isolates carried stx1 and eae, the other stx2 and eae. E. coli isolated from milk contained stx1, stx2, and eltB. The results show that feces or milk from healthy dairy cattle may contain E. coli pathotypes that express virulence genes, indicating that these materials have zoonotic potential. The results also reinforce the idea that host age can influence the dynamics of virulence genes in E. coli from cattle. Copyright © International Association for Food Protection.75916981700Allerberger, F., Wagner, M., Schweiger, P., Rammer, H.P., Resch, A., Dierich, M.P., Friedrich, A.W., Karch, H., Escherichia coli O157 infections and unpasteurized milk (2001) Euro Surveill., 10, pp. 147-151Baylis, C.L., Raw milk and raw milk cheeses as vehicles for infection by verocytotoxin-producing Escherichia coli (2009) Int. J. Dairy Technol., 62, pp. 293-307Beutin, L., Montenegro, M.A., Orskov, I., Orskov, F., Prada, J., Zimmermann, S., Stephan, R., Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli (1998) J. Clin. Microbiol., 27, pp. 2559-2564China, B., Pirson, V., Mainil, J., Typing of bovine attaching and effacing Escherichia coli by multiplex in vitro amplification of virulence-associated genes (1996) Applied and Environmental Microbiology, 62 (9), pp. 3462-3465Crump, J.A., Langer, A.J., Gage, R., Baysinger, M., Withers, G., Toney, D.M., Hunter, S.B., Van Gilder, T.J., An outbreak of Escherichia coli O157:H7 infections among visitors to a dairy farm (2002) N. Engl. J. Med., 347, pp. 555-560Espie, E., Vaillant, V., Mariani-Kurkdjian, P., Grimont, F., Martin-Schaller, R., De Valk, H., Vernozy-Rozand, C., Escherichia coli O157 outbreak associated with fresh unpasteurized goats' cheese (2006) Epidemiology and Infection, 134 (1), pp. 143-146. , DOI 10.1017/S0950268805004887, PII S0950268805004887Fremaux, B., Raynaud, S., Beutin, L., Rozand, C.V., Dissemination and persistence of Shiga toxin-producing Escherichia coli (STEC) strains on French dairy farms (2006) Veterinary Microbiology, 117 (2-4), pp. 180-191. , DOI 10.1016/j.vetmic.2006.04.030, PII S0378113506001854Hussein, H.S., Sakuma, T., Invited review: Prevalence of Shiga toxin-producing Escherichia coli in dairy cattle and their products (2005) Journal of Dairy Science, 88 (2), pp. 450-465Keskimaki, M., Eklund, M., Pesonen, H., Heiskanen, T., Siitonen, A., EPEC, EAEC and STEC in stool specimens: Prevalence and molecular epidemiology of isolates (2001) Diagnostic Microbiology and Infectious Disease, 40 (4), pp. 151-156. , DOI 10.1016/S0732-8893(01)00265-6, PII S0732889301002656Kiers, J.L., Nout, M.J.R., Rombouts, F.M., Nabuurs, M.J.A., Van Der Meulen, J., Inhibition of adhesion of enterotoxigenic Escherichia coli K88 by soya bean tempe (2002) Letters in Applied Microbiology, 35 (4), pp. 311-315. , DOI 10.1046/j.1472-765X.2002.01182.xKoneman, E.W., Allens, S.D., Janda, W.M., Schreckenberger, P.C., Winn Jr., W.C., (2001) Diagnóstico Microbiológico, , Medsi Press, Rio de Janeiro, BrazilLaw, D., Virulence factors of Escherichia coli O157 and other Shiga toxin- producing E. coli (2000) Journal of Applied Microbiology, 88 (5), pp. 729-745. , DOI 10.1046/j.1365-2672.2000.01031.xLeomil, L., Aidar-Ugrinovich, L., Guth, B.E.C., Irino, K., Vettorato, M.P., Onuma, D.L., Castro, A.F.P., Frequency of Shiga toxin-producing Escherichia coli (STEC) isolates among diarrheic and non-diarrheic calves in Brazil (2003) Vet. Microbiol., 97, pp. 103-109Martin, A., Beutin, L., Characteristics of Shiga toxinproducing Escherichia coli from meat and milk products of different origins and association with food producing animals as main contamination sources (2011) Int. J. Food Microbiol., 146, pp. 99-104Nataro, J.P., Kaper, J.B., Diarrheagenic Escherichia coli (1998) Clinical Microbiology Reviews, 11 (1), pp. 142-201Nielsen, E.M., Tegtmeier, C., Andersen, H.J., Gronbaek, C., Andersen, J.S., Influence of age, sex and herd characteristics on the occurrence of verocytotoxin-producing Escherichia coli O157 in Danish dairy farms (2002) Veterinary Microbiology, 88 (3), pp. 245-257. , DOI 10.1016/S0378-1135(02)00108-6, PII S0378113502001086Paiba, G.A., Wilesmith, J.W., Evans, S.J., Pascoe, S.J.S., Smith, R.P., Kidd, S.A., Ryan, J.B.M., Payne, J.H., Prevalence of faecal excretion of verocytotoxigenic Escherichia coli O157 in cattle in England and Wales (2003) Veterinary Record, 153 (12), pp. 347-353Penteado, A.S., Ugrinovich, L.A., Blanco, J., Blanco, M., Blanco, J.E., Mora, A., Andrade, J.R.C., Pestana De Castro, A.F., Serobiotypes and virulence genes of Escherichia coli strains isolated from diarrheic and healthy rabbits in Brazil (2002) Veterinary Microbiology, 89 (1), pp. 41-51. , DOI 10.1016/S0378-1135(02)00148-7, PII S0378113502001487Pigatto, C.P., Schocken-Iturrino, R.P., Souza, E.M., Pedrosa, F.O., Comarella, L., Irino, K., Kato, M.A.M.F., Fadel-Picheth, C.M.T., Virulence properties and antimicrobial susceptibility of Shiga toxin-producing Escherichia coli strains isolated from healthy cattle from Paraná State, Brazil (2008) Canadian Journal of Microbiology, 54 (7), pp. 588-593. , http://article.pubs.nrc-cnrc.gc.ca/RPAS/RPViewDoc?_handler_= HandleInitialGet&calyLang=eng&journal=cjm&volume=54&articleFile= w08-046.pdf, DOI 10.1139/W08-046Salvadori, M.R., Valadares, G.F., Da Silva Leite, D., Blanco, J., Yano, T., Virulence factors of Escherichia coli isolated from calves with diarrhea in Brazil (2003) Brazilian Journal of Microbiology, 34 (3), pp. 230-235Tristao, L.C.S., Gonzalez, A.G.M., Coutinho, C.A.S., Cerqueira, A.M.F., Gomes, M.J.P., Irino, K., Guth, B.E.C., Andrade, J.R.C., Virulence markers and genetic relationships of Shiga toxin-producing Escherichia coli strains from serogroup O111 isolated from cattle (2007) Veterinary Microbiology, 119 (2-4), pp. 358-365. , DOI 10.1016/j.vetmic.2006.09.006, PII S0378113506003737Ugrinovich, L.A., De Ávila, F.A., Oliveira, M.N., De Castro, A.F.P., Identificação dos genes que codificam para a enterotoxina termola'bil LT-II em amostras de Escherichia coli isoladas de bezerros com diarréia na região de Jaboticabal, SP, Brasil (2002) Cienc. Rural (Brasil), 32, pp. 289-291Wasteson, Y., Zoonotic Escherichia coli (2001) Acta Vet. Scand., 95, pp. 79-8

    Comparison between avian pathogenic (APEC) and avian faecal (AFEC) Escherichia coli isolated from different regions in Brazil

    No full text
    none6siDetection and analysis of virulence-associated genes (VAGs) of avian pathogenic Escherichia coli (APEC) may be helpful to distinguish pathogenic from commensal faecal strains (AFEC). The aim of this study was to characterise 120 isolates of avian Escherichia coli, comprising 91 APEC (from diseased birds) and 29 AFEC (from healthy chickens), collected in Brazil. Phylogenetic analysis and in vivo pathogenicity testing was performed on 38 VAGs. The VAGs iucD, iutA, iroN, fepC, ompT, cvi and hlyF were statistically associated with medium and high pathogenicity (MP/HP) strains. A minimal group of seven VAGs may be required to accurately discriminate pathogenic and non-pathogenic avian strains of E. coli in Brazil.noneSilveira, Flavio; Maluta, R. P.; Tiba, M. R.; De Paiva, J. B.; Guastalli, E. A. L.; Da Silveira, W. D.Silveira, Flavio; Maluta, R. P.; Tiba, M. R.; De Paiva, J. B.; Guastalli, E. A. L.; Da Silveira, W. D

    Frequencies Of Virulence Genes And Pulse Field Gel Electrophoresis Fingerprints In Escherichia Coli Isolates From Canine Pyometra

    No full text
    Escherichia coli is the most common bacterial agent isolated from canine pyometra. The frequencies of 24 virulence genes and pulsed field gel electrophoresis (PFGE) profiles were determined for 23 E. coli isolates from cases of canine pyometra in Brazil. The frequencies of virulence genes were 91.3% fimH, 91.3% irp-2, 82.6% fyuA, 56.5% iroN, 47.8% traT, 39.1% usp, 34.8% sfaD/E, 34.8% tsh, 30.4% papC, 30.4% hlyA, 26.1% papGIII, 26.1% cnf-1, 21.7% papE/F, 21.7% iss, 17.4% iutA, 17.4% ompT, 17.4% cvaC, 17.4% hlyF, 17.4% iucD, 13.0% iucC, 13.0% astA, 4.3% papGII, 0% afaB/C and 0% papGI. The high frequency of yersiniabactin (fyuA and irp2) and salmochelin (iroN) genes suggests that iron uptake systems might be important in the pathogenesis of canine pyometra. PFGE profiles of 19 isolates were heterogeneous, confirming that E. coli isolates from canine pyometra are unlikely to be epidemic clones.2022393395Chen, Y.M.M., Wright, P.J., Lee, C.-S., Browning, G.F., Uropathogenic virulence factors in isolates of Escherichia coli from clinical cases of canine pyometra and feces of healthy bitches (2003) Veterinary Microbiology, 94, pp. 57-69Coggan, J.A., Melville, P.A., Oliveira, C.M., Faustino, M., Moreno, A.M., Benites, N.R., Microbiological and histopathological aspects of canine pyometra (2008) Brazilian Journal of Microbiology, 39, pp. 477-483Ghanbarpour, R., Akhtardanesh, B., Genotype and antibiotic resistance profile of Escherichia coli strains involved in canine pyometra (2012) Comparative Clinical Pathology, 21, pp. 737-744Hagman, R., Kühn, I., Escherichia coli strains isolated from the uterus and urinary bladder of bitches suffering from pyometra: Comparison by restriction enzyme digestion and pulsed-field gel electrophoresis (2002) Veterinary Microbiology, 84, pp. 143-153Krekeler, N., Marenda, M.S., Browning, G.F., Holden, K.M., Charles, J.A., Wright, P.J., The role of type 1, P and S fimbriae in binding of Escherichia coli to the canine endometrium (2013) Veterinary Microbiology, 164, pp. 399-404Mateus, L., Henriques, S., Merino, C., Pomba, C., Lopes da Costa, L., Silva, E., Virulence genotypes of Escherichia coli canine isolates from pyometra, cystitis and fecal origin (2013) Veterinary Microbiology, 166, pp. 590-594Ribot, E.M., Fair, M.A., Gautom, R., Cameron, D.N., Hunter, S.B., Swaminathan, B., Barrett, T.J., Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet (2006) Foodborne Pathogens and Disease, 3, pp. 59-67Siqueira, A.K., Ribeiro, M.G., Leite, D.D.S., Tiba, M.R., Moura, C.D., Lopes, M.D., Prestes, N.C., de Silva, A.V., Virulence factors in Escherichia coli strains isolated from urinary tract infection and pyometra cases and from feces of healthy dogs (2009) Research in Veterinary Science, 86, pp. 206-210Smith, F.O., Canine pyometra (2006) Theriogenology, 66, pp. 610-612Wadås, B., Kühn, I., Lagerstedt, A.-S., Jonsson, P., Biochemical phenotypes of Escherichia coli in dogs: Comparison of isolates isolated from bitches suffering from pyometra and urinary tract infection with isolates from faeces of healthy dogs (1996) Veterinary Microbiology, 52, pp. 293-30

    Prevalence and identification of Salmonella spp. in water buffaloes from São Paulo State, Brazil

    No full text
    RESUMO O objetivo do estudo foi investigar a prevalência de Salmonella spp. em amostras de fezes de búfalos do estado de São Paulo, Brasil, e identificar os sorotipos isolados. Foram examinadas 116 amostras de suabes retais de búfalos das raças Jafarabadi e Murrah, coletadas em triplicata, em seis propriedades rurais localizadas nas regiões Central, Centro-Oeste e Nordeste do estado de São Paulo, Brasil. Para avaliar a presença de Salmonella spp., foram utilizados três diferentes caldos de enriquecimento (caldo selenito cistina, caldo tetrationado Muller-Kauffmann e caldo Rappaport-Vassiliadis) e dois diferentes meios de cultura (ágar verde brilhante modificado e ágar XLT4). Das 116 amostras de suabes retais examinadas, oito amostras (6,90%; 8/116) foram positivas para Salmonella spp., incluindo quatro sorotipos: S. Panama (50%; 4/8), S. Agona (25%; 2/8) , S. Newport (12,5%; 1/8) e S. Saintpaul (12,5%; 1/8), todos isolados de búfalos sem sinais clínicos de salmonelose, indicando a importância dos animais assintomáticos como fonte de infecção para outros animais e seres humanos. Das seis propriedades rurais avaliadas, apenas em duas fazendas (33,3%; 2/6) não foi detectada Salmonella spp. O uso de mais de um caldo de enriquecimento seletivo e de mais de um meio de cultura é indicado para o isolamento de Salmonella

    Overlapped Sequence Types (sts) And Serogroups Of Avian Pathogenic (apec) And Human Extra-intestinal Pathogenic (expec) Escherichia Coli Isolated In Brazil

    No full text
    Avian pathogenic Escherichia coli (APEC) strains belong to a category that is associated with colibacillosis, a serious illness in the poultry industry worldwide. Additionally, some APEC groups have recently been described as potential zoonotic agents. In this work, we compared APEC strains with extraintestinal pathogenic E. coli (ExPEC) strains isolated from clinical cases of humans with extra-intestinal diseases such as urinary tract infections (UTI) and bacteremia. PCR results showed that genes usually found in the ColV plasmid (tsh, iucA, iss, and hlyF) were associated with APEC strains while fyuA, irp-2, fepC sitDchrom, fimH, crl, csgA, afa, iha, sat, hlyA, hra, cnf1, kpsMTII, clpVSakai and malX were associated with human ExPEC. Both categories shared nine serogroups (O2, O6, O7, O8, O11, O19, O25, O73 and O153) and seven sequence types (ST10, ST88, ST93, ST117, ST131, ST155, ST359, ST648 and ST1011). Interestingly, ST95, which is associated with the zoonotic potential of APEC and is spread in avian E. coli of North America and Europe, was not detected among 76 APEC strains. When the strains were clustered based on the presence of virulence genes, most ExPEC strains (71.7%) were contained in one cluster while most APEC strains (63.2%) segregated to another. In general, the strains showed distinct genetic and fingerprint patterns, but avian and human strains of ST359, or ST23 clonal complex (CC), presented more than 70% of similarity by PFGE. The results demonstrate that some "zoonotic-related" STs (ST117, ST131, ST10CC, ST23CC) are present in Brazil. Also, the presence of moderate fingerprint similarities between ST359 E. coli of avian and human origin indicates that strains of this ST are candidates for having zoonotic potential. © 2014 Maluta et al.98Dziva, F., Stevens, M.P., Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts (2008) Avian Pathology, 37 (4), pp. 355-366. , DOI 10.1080/03079450802216652, PII 794893305Ewers, C., Li, G., Wilking, H., Kiessling, S., Alt, K., Antao E.-M, Laturnus, C., Wieler, L.H., Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: How closely related are they? (2007) International Journal of Medical Microbiology, 297 (3), pp. 163-176. , DOI 10.1016/j.ijmm.2007.01.003, PII S1438422107000173Moulin-Schouleur, M., Reperant, M., Laurent, S., Bree, A., Mignon-Grasteau, S., Germon, P., Rasschaert, D., Schouler, C., Extraintestinal pathogenic Escherichia coli strains of avian and human origin: Link between phylogenetic relationships and common virulence patterns (2007) Journal of Clinical Microbiology, 45 (10), pp. 3366-3376. , DOI 10.1128/JCM.00037-07Rodriguez-Siek, K.E., Giddings, C.W., Doetkott, C., Johnson, T.J., Fakhr, M.K., Nolan, L.K., Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis (2005) Microbiology, 151 (6), pp. 2097-2110. , DOI 10.1099/mic.0.27499-0Mellata, M., Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends (2013) Foodborne Pathog Dis, 10, pp. 916-932Moreno, E., Andreu, A., Perez, T., Sabate, M., Johnson, J.R., Prats, G., Relationship between Escherichia coli strains causing urinary tract infection in women and the dominant faecal flora of the same hosts (2006) Epidemiology and Infection, 134 (5), pp. 1015-1023. , DOI 10.1017/S0950268806005917, PII S0950268806005917Yamamoto, S., Tsukamoto, T., Terai, A., Kurazono, H., Takeda, Y., Yoshida, O., Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli (1997) Journal of Urology, 157 (3), pp. 1127-1129. , DOI 10.1016/S0022-5347(01)65154-1Russo, T.A., Johnson, J.R., Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC (2000) Journal of Infectious Diseases, 181 (5), pp. 1753-1754. , DOI 10.1086/315418Kaper, J.B., Nataro, J.P., Mobley, H.L.T., Pathogenic Escherichia coli (2004) Nature Reviews Microbiology, 2 (2), pp. 123-140. , DOI 10.1038/nrmicro818Johnson, T.J., Wannemuehler, Y., Johnson, S.J., Stell, A.L., Doetkott, C., Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens (2008) Appl Environ Microbiol, 74, pp. 7043-7050Danzeisen, J.L., Wannemuehler, Y., Nolan, L.K., Johnson, T.J., Comparison of multilocus sequence analysis and virulence genotyping of Escherichia coli from live birds, retail poultry meat, and human extraintestinal infection (2013) Avian Dis, 57, pp. 104-108Vincent, C., Boerlin, P., Daignault, D., Dozois, C.M., Dutil, L., Food reservoir for Escherichia coli causing urinary tract infections (2010) Emerg Infect Dis, 16, pp. 88-95Maluta, R.P., Gatti, M.S.V., Joazeiro, P.P., De Paiva, J.B., Rojas, T.C.G., Avian extra-intestinal Escherichia coliexhibits enterotoxigenic-like activity in the in vivo rabbit ligated ileal loop assay (2014) Foodborne Pathogens and Disease, 11, pp. 484-489Arbeit, D.J., Laboratory procedures for the epidemiologic analysis of microorganisms (1995) Manual of Clinical Microbiology. 6th Ed, pp. 190-208. , Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, editors. Washington, D.C.: American Society for MicrobiologyOrskov, F., Orskov, I., Serotyping of Escherichia coli (1984) Methods Microbiol, 14, pp. 43-112Machado, J., Grimont, F., Grimont, P.A., Identification of Escherichia coli flagellar types by restriction of the amplified fliC gene (2000) Res Microbiol, 151, pp. 535-546Borges, C.A., Beraldo, L.G., Maluta, R.P., Cardozo, M.V., Guth, B.E.C., Shiga Toxigenic and Atypical Enteropathogenic Escherichia coli in the Feces and Carcasses of Slaughtered Pigs (2012) Foodborne Pathogens and Disease, 9, pp. 1119-1125Clermont, O., Bonacorsi, S., Bingen, E., Rapid and simple determination of the Escherichia coli phylogenetic group (2000) Appl Environ Microbiol, 66, pp. 4555-4558De Hoon, M.J.L., Imoto, S., Nolan, J., Miyano, S., Open source clustering software (2004) Bioinformatics, 20 (9), pp. 1453-1454. , DOI 10.1093/bioinformatics/bth078Saldanha, A.J., Java Treeview-extensible visualization of microarray data (2004) Bioinformatics, 20, pp. 3246-3248Wirth, T., Falush, D., Lan, R., Colles, F., Mensa, P., Sex and virulence in Escherichia coli: An evolutionary perspective (2006) Mol Microbiol, 60, pp. 1136-1151Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees (1993) Molecular Biology and Evolution, 10 (3), pp. 512-526Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739Smith, J.L., Fratamico, P.M., Gunther, N.W., Extraintestinal pathogenic Escherichia coli (2007) Foodborne Pathogens and Disease, 4 (2), pp. 134-163. , DOI 10.1089/fpd.2007.0087Ginns, C.A., Benham, M.L., Adams, L.M., Whithear, K.G., Bettelheim, K.A., Crabb, B.S., Browning, G.F., Colonization of the respiratory tract by a virulent strain of avian Escherichia coli requires carriage of a conjugative plasmid (2000) Infection and Immunity, 68 (3), pp. 1535-1541. , DOI 10.1128/IAI.68.3.1535-1541.2000Manges, A.R., Johnson, J.R., Food-borne origins of Escherichia coli causing extraintestinal infections (2012) Clin Infect Dis, 55, pp. 712-719Mora, A., López, C., Herrera, A., Viso, S., Mamani, R., Emerging avian pathogenic Escherichia coli strains belonging to clonal groups O111:H4-DST2085 and O111:H4-D-ST117 with high virulence-gene content and zoonotic potential (2012) Vet Microbiol, 156, pp. 347-352Dissanayake, D.R., Octavia, S., Lan, R., Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka (2014) Vet Microbiol, 168, pp. 403-412Hussein, A.H., Ghanem, I.A., Eid, A.A., Ali, M.A., Sherwood, J.S., Molecular and phenotypic characterization of Escherichia coli isolated from broiler chicken flocks in Egypt (2013) Avian Dis, 57, pp. 602-611Pires-dos-Santos, T., Bisgaard, M., Christensen, H., Genetic diversity and virulence profiles of Escherichia coli causing salpingitis and peritonitis in broiler breeders (2013) Vet Microbiol, 162, pp. 873-880Giufrè, M., Graziani, C., Accogli, M., Luzzi, I., Busani, L., Escherichia coli of human and avian origin: Detection of clonal groups associated with fluoroquinolone and multidrug resistance in Italy (2012) J Antimicrob Chemother, 67, pp. 860-867Platell, J.L., Johnson, J.R., Cobbold, R.N., Trott, D.J., Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods (2011) Vet Microbiol, 153, pp. 99-108Rogers, B.A., Sidjabat, H.E., Paterson, D.L., Escherichia coli O25b-ST131: A pandemic, multiresistant, community-associated strain (2011) J Antimicrob Chemother, 66, pp. 1-14Peirano, G., Asensi, M.D., Pitondo-Silva, A., Pitout, J.D., Molecular characteristics of extended-spectrum b-lactamase-producing Escherichia coli from Rio de Janeiro, Brazil (2011) Clin Microbiol Infect, 17, pp. 1039-1043Berman, H., Barberino, M.G., Moreira, E.D., Riley, L., Reis, J.N., Distribution of strain type and antimicrobial susceptibility of Escherichia coli causing meningitis in a large urban setting in Brazil (2014) Journal of Clinical MicrobiologyKawamura, K., Goto, K., Nakane, K., Arakawa, Y., Molecular Epidemiology of Extended-Spectrum β-Lactamases and Escherichia coli Isolated from Retail Foods Including Chicken Meat in Japan (2014) Foodborne Pathog Dis, 11, pp. 104-110Mora, A., Herrera, A., Mamani, R., López, C., Alonso, M.P., Recent Emergence of Clonal Group O25b:K1:H4-B2-ST131 ibeA Strains among Escherichia coli Poultry Isolates, Including CTX-M-9-Producing Strains, and Comparison with Clinical Human Isolates (2010) Applied and Environmental Microbiology, 76, pp. 6991-6997Minarini, L.A.R., Camargo, I.L.B.C., Pitondo-Silva, A., Darini, A.L.C., Multilocus sequence typing of uropathogenic ESBL-producing Escherichia coli isolated in a Brazilian community (2007) Current Microbiology, 55 (6), pp. 524-529. , DOI 10.1007/s00284-007-9026-3Valverde, A., Cantón, R., Garcillán-Barcia, M.P., Novais, Â., Galán, J.C., Spread of blaCTX-M-14 Is Driven Mainly by IncK Plasmids Disseminated among Escherichia coli Phylogroups A, B1, and D in Spain (2009) Antimicrobial Agents and Chemotherapy, 53, pp. 5204-521

    Avian Extraintestinal Escherichia Coli Exhibits Enterotoxigenic-like Activity In The In Vivo Rabbit Ligated Ileal Loop Assay

    No full text
    Avian pathogenic Escherichia coli (APEC) strains harbor a number of virulence genes and cause extraintestinal diseases, such as septicemia, swollen-head syndrome, salpingitis, and omphalitis in poultry. APEC strains are not known to cause intestinal diseases. Herein, for the first time, it is reported that APEC strains were able to induce an enterotoxigenic-like effect in rabbit ligated ileal loops. Strain SEPT362 caused cell detachment of the intestinal villi, which also showed a flattened and wilted appearance, but the integrity of the tight junctions was maintained. Additionally, this strain did not adhere to enterocytes in vivo, although adhesin encoding genes (fimH, csgA, lpfA2-3, and ECP) were present while other lpfA types, sfa, afa, papC, and ral genes were not. This enterotoxigenic-like activity was conserved after thermal treatment of the supernatant at 65°C but not at 100°C. Moreover, experiments based on filtering with different molecular weight cut-off (MWCO) pore sizes demonstrated that the component associated with the observed biological effect has a molecular weight >100 kDa. Blast search and polymerase chain reaction assays for known E. coli virulence factors showed that strain SEPT362 harbors the gene encoding for the toxin EAST-1 and the serine protease autotransporter (SPATE) Tsh, but is negative for genes encoding for the toxins LT-I, STh, STp, Stx1, Stx2, CNF-1, CNF-2, CDT and the SPATEs Sat, Pic, Vat, SigA, SepA, EatA, EspP, or EspC. A cloned copy of the tsh gene in E. coli K-12 was also tested and was shown to have an enterotoxic effect. These results suggest that APEC might induce fluid accumulation in the rabbit gut. The Tsh autotransporter seems to be one of the factors associated with this phenotype. © Copyright 2014, Mary Ann Liebert, Inc. 2014.116484489Adlerberth, I., Hanson, L., Svanborg, C., Svennerholm, A., Nordgren, S., Wold, A., Adhesins of Escherichia coli associated with extra-intestinal pathogenicity confer binding to colonic epithelial cells (1995) Microb Pathog, 18, pp. 373-385Bauchart, P., Germon, P., Brée, A., Oswald, E., Hacker, J., Dobrindt, U., Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli-Search for factors involved in host specificity or zoonotic potential (2010) Microb Pa-thog, 49, pp. 105-115Bélanger, L., Garenaux, A., Harel, J., Boulianne, M., Nadeau, E., Dozois, C.M., Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E coli (2011) FEMS Immunol Med Microbiol, 62, pp. 1-10Blanco, J.E., Blanco, M., Mora, A., Blanco, J., Production of toxins (enterotoxins, verotoxins, and necrotoxins) and colicins by Escherichia coli strains isolated from septicemic and healthy chickens: Relationship with in vivo pathogenicity (1997) J Clin Microbiol, 35, pp. 2953-2957Borges, C.A., Beraldo, L.G., Maluta, R.P., Shiga toxigenic and atypical enteropathogenic Escherichia coli in the feces and carcasses of slaughtered pigs (2012) Foodborne Pathog Dis, 9, pp. 1119-1125De Pace, F., Boldrin De Paiva, J., Nakazato, G., Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain (2011) Microbiology, 157, pp. 2954-2962Dziva, F., Stevens, M., Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts (2008) Avian Pathol, 37, pp. 355-366Matsuda, K., Chaudhari, A.A., Lee, J.H., Avian colibacillosis caused by an intestinal pathogenic Escherichia coli isolate from calf diarrhea (2010) Res Vet Sci, 89, pp. 150-152Mellata, M., Human and avian extraintestinal pathogenic Es-cherichia coli: Infections, zoonotic risks, and antibiotic resistance trends (2013) Foodborne Pathog Dis, 10, pp. 916-932Ménard, L.-P., Lussier, J.G., Lépine, F., De Sousa, C.P., Dubreuil, J.D., Expression, purification, and biochemical characterization of enteroaggregative Escherichia coli heat-stable enterotoxin 1 (2004) Protein Expr Purif, 33, pp. 223-231Moulin-Schouleur, M., Répérant, M., Laurent, S., Extra-intestinal pathogenic Escherichia coli strains of avian and human origin: Link between phylogenetic relationships and common virulence patterns (2007) J Clin Microbiol, 45, pp. 3366-3376Navarro-Garcia, F., Gutierrez-Jimenez, J., Garcia-Tovar, C., Castro, L.A., Salazar-Gonzalez, H., Cordova, V., Pic, an autotransporter protein secreted by different pathogens in the En-terobacteriaceae family, is a potent mucus secretagogue (2010) Infect Immun, 78, pp. 4101-4109Olesen, B., Scheutz, F., Andersen, R.L., Enteroaggregative Escherichia coli O78:H10 the cause of an outbreak of urinary tract infection (2012) J Clin Microbiol, 50, pp. 3703-3711Provence, D.L., Curtiss, R., Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Es-cherichia coli strain (1994) Infect Immun, 62, pp. 1369-1380Tcg, R., Maluta, R.P., Parizzi, L.P., Genome sequences of avian pathogenic Escherichia coli strains isolated from Brazilian commercial poultry (2013) Genome Announce, 1, pp. e00110-e00113Russo, T.A., Johnson, J.R., Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC (2000) J Infect Dis, 181, pp. 1753-1754Savarino, S.J., Fasano, A., Robertson, D.C., Levine, M.M., En-teroaggregative Escherichia coli elaborate a heat-stable en-terotoxin demonstrable in an in vitro rabbit intestinal model (1991) J Clin Invest, 87, pp. 1450-1455Schierack, P., Walk, N., Ewers, C., ExPEC-typical virulence-associated genes correlate with successful colonization by intestinal E coli in a small piglet group (2008) Environ Microbiol, 10, pp. 1742-1751Syngkon, A., Elluri, S., Koley, H., Studies on a novel serine protease of a DhapADprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model (2010) PLoS ONE, 5. , pii:e13122Mam, V., Tat, G., Ajp, F., Knöbl, T., Servin, A.L., Liévin-Le Moal, V., Two atypical enteropathogenic Escher-ichia coli strains induce the production of secreted and membrane-bound mucins to benefit their own growth at the apical surface of human mucin-secreting intestinal HT29-MTX cells (2010) Infect Immun, 78, pp. 927-93
    corecore