1,102 research outputs found
Sparling two-forms, the conformal factor and the gravitational energy density of the teleparallel equivalent of general relativity
It has been shown recently that within the framework of the teleparallel
equivalent of general relativity (TEGR) it is possible to define the energy
density of the gravitational field. The TEGR amounts to an alternative
formulation of Einstein's general relativity, not to an alternative gravity
theory. The localizability of the gravitational energy has been investigated in
a number of space-times with distinct topologies, and the outcome of these
analises agree with previously known results regarding the exact expression of
the gravitational energy, and/or with the specific properties of the space-time
manifold. In this article we establish a relationship between the expression
for the gravitational energy density of the TEGR and the Sparling two-forms,
which are known to be closely connected with the gravitational energy. We also
show that our expression of energy yields the correct value of gravitational
mass contained in the conformal factor of the metric field.Comment: 12 pages, Latex file, no figures, to be published in Gen. Rel. Gra
General relativity on a null surface: Hamiltonian formulation in the teleparallel geometry
The Hamiltonian formulation of general relativity on a null surface is
established in the teleparallel geometry. No particular gauge conditons on the
tetrads are imposed, such as the time gauge condition. By means of a 3+1
decomposition the resulting Hamiltonian arises as a completely constrained
system. However, it is structurally different from the the standard
Arnowitt-Deser-Misner (ADM) type formulation. In this geometrical framework the
basic field quantities are tetrads that transform under the global SO(3,1) and
the torsion tensor.Comment: 15 pages, Latex, no figures, to appear in the Gen. Rel. Gra
Neutron Stars in Teleparallel Gravity
In this paper we deal with neutron stars, which are described by a perfect
fluid model, in the context of the teleparallel equivalent of general
relativity. We use numerical simulations to find the relationship between the
angular momentum of the field and the angular momentum of the source. Such a
relation was established for each stable star reached by the numerical
simulation once the code is fed with an equation of state, the central energy
density and the ratio between polar and equatorial radii. We also find a regime
where linear relation between gravitational angular momentum and moment of
inertia (as well as angular velocity of the fluid) is valid. We give the
spatial distribution of the gravitational energy and show that it has a linear
dependence with the squared angular velocity of the source.Comment: 19 pages, 14 figures. arXiv admin note: text overlap with
arXiv:1206.331
Three-dimensional Dirac oscillator in a thermal bath
The thermal properties of the three-dimensional Dirac oscillator are
considered. The canonical partition function is determined, and the
high-temperature limit is assessed. The degeneracy of energy levels and their
physical implications on the main thermodynamic functions are analyzed,
revealing that these functions assume values greater than the one-dimensional
case. So that at high temperatures, the limit value of the specific heat is
three times bigger.Comment: 9 pages, 4 figures. Text improved, references added. Revised to match
accepted version in Europhysics Letters
- …