1,205 research outputs found

    Regularized expression for the gravitational energy-momentum in teleparallel gravity and the principle of equivalence

    Full text link
    The expression of the gravitational energy-momentum defined in the context of the teleparallel equivalent of general relativity is extended to an arbitrary set of real-valued tetrad fields, by adding a suitable reference space subtraction term. The characterization of tetrad fields as reference frames is addressed in the context of the Kerr space-time. It is also pointed out that Einstein's version of the principle of equivalence does not preclude the existence of a definition for the gravitational energy-momentum density.Comment: 17 pages, Latex file, no figure; minor correction in eq. (14), three references added, to appear in the GRG Journa

    Neutron Stars in Teleparallel Gravity

    Full text link
    In this paper we deal with neutron stars, which are described by a perfect fluid model, in the context of the teleparallel equivalent of general relativity. We use numerical simulations to find the relationship between the angular momentum of the field and the angular momentum of the source. Such a relation was established for each stable star reached by the numerical simulation once the code is fed with an equation of state, the central energy density and the ratio between polar and equatorial radii. We also find a regime where linear relation between gravitational angular momentum and moment of inertia (as well as angular velocity of the fluid) is valid. We give the spatial distribution of the gravitational energy and show that it has a linear dependence with the squared angular velocity of the source.Comment: 19 pages, 14 figures. arXiv admin note: text overlap with arXiv:1206.331

    Dirac spinor fields in the teleparallel gravity: comment on "Metric-affine approach to teleparallel gravity"

    Full text link
    We show that the coupling of a Dirac spinor field with the gravitational field in the teleparallel equivalent of general relativity is consistent. For an arbitrary SO(3,1) connection there are two possibilities for the coupling of the spinor field with the gravitational field. The problems of consistency raised by Y. N. Obukhov and J. G. Pereira in the paper {\it Metric-affine approach to teleparallel gravity} [gr-qc/0212080] take place only in the framework of one particular coupling. By adopting an alternative coupling the consistency problem disappears.Comment: 8 pages, Latex file, no figures, to appear in the Phys. Rev. D as a Commen

    Gravitational energy of a magnetized Schwarzschild black hole - a teleparallel approach

    Full text link
    We investigate the distribution of gravitational energy on the spacetime of a Schwarzschild black hole immersed in a cosmic magnetic field. This is done in the context of the {\it Teleparallel Equivalent of General Relativity}, which is an alternative geometrical formulation of General Relativity, where gravity is describe by a spacetime endowed with torsion, rather than curvature, with the fundamental field variables being tetrads. We calculate the energy enclosed by a two-surface of constant radius - in particular, the energy enclosed by the event horizon of the black hole. In this case we find that the magnetic field has the effect of increasing the gravitational energy as compared to the vacuum Schwarzschild case. We also compute the energy (i) in the weak magnetic field limit, (ii) in the limit of vanishing magnetic field, and (iii) in the absence of the black hole. In all cases our results are consistent with what should be expected on physical grounds.Comment: version to match the one to be published on General Relativity and Gravitatio

    The Casimir effect for the scalar and Elko fields in a Lifshitz-like field theory

    Full text link
    In this work, we obtain the Casimir energy for the real scalar field and the Elko neutral spinor field in a field theory at a Lifshitz fixed point (LP). We analyze the massless and the massive case for both fields using dimensional regularization. We obtain the Casimir energy in terms of the dimensional parameter and the LP parameter. Particularizing our result, we can recover the usual results without LP parameter in (3+1) dimensions presented in the literature. Moreover, we compute the effects of the LP parameter in the thermal corrections for the massless scalar field.Comment: 20 pages, 2 figures, some results have been modified and other changes to the text have been made to match the accepted version in Eur. Phys. J.

    General relativity on a null surface: Hamiltonian formulation in the teleparallel geometry

    Get PDF
    The Hamiltonian formulation of general relativity on a null surface is established in the teleparallel geometry. No particular gauge conditons on the tetrads are imposed, such as the time gauge condition. By means of a 3+1 decomposition the resulting Hamiltonian arises as a completely constrained system. However, it is structurally different from the the standard Arnowitt-Deser-Misner (ADM) type formulation. In this geometrical framework the basic field quantities are tetrads that transform under the global SO(3,1) and the torsion tensor.Comment: 15 pages, Latex, no figures, to appear in the Gen. Rel. Gra

    Effects of a CPT-even and Lorentz-violating nonminimal coupling on the electron-positron scattering

    Get PDF
    We propose a new \emph{CPT}-even and Lorentz-violating nonminimal coupling between fermions and Abelian gauge fields involving the CPT-even tensor (KF)μναβ(K_{F})_{\mu\nu\alpha\beta} of the standard model extension. We thus investigate its effects on the cross section of the electron-positron scattering by analyzing the process e++e−→μ++μ−e^{+}+e^{-}\rightarrow\mu^{+}+\mu^{-}. Such a study was performed for the parity-odd and parity-even nonbirefringent components of the Lorentz-violating (KF)μναβ(K_{F})_{\mu\nu\alpha\beta} tensor. Finally, by using experimental data available in the literature, we have imposed upper bounds as tight as 10−12(eV)−110^{-12}(eV)^{-1} on the magnitude of the CPT-even and Lorentz-violating parameters while nonminimally coupled.Comment: LaTeX2e, 06 pages, 01 figure

    Radiative generation of the CPT-even gauge term of the SME from a dimension-five nonminimal coupling term

    Full text link
    In this letter we show for the first time that the usual CPT-even gauge term of the standard model extension (SME) can be radiatively generated, in a gauge invariant level, in the context of a modified QED endowed with a dimension-five nonminimal coupling term recently proposed in the literature. As a consequence, the existing upper bounds on the coefficients of the tensor (KF)(K_{F}) can be used improve the bounds on the magnitude of the nonminimal coupling, λ(KF),\lambda(K_{F}), by the factors 10510^{5} or 1025.10^{25}. The nonminimal coupling also generates higher-order derivative contributions to the gauge field effective action quadratic terms.Comment: Revtex style, two columns, 6 pages, revised final version to be published in the Physics Letters B (2013
    • …
    corecore