857 research outputs found

    Sparling two-forms, the conformal factor and the gravitational energy density of the teleparallel equivalent of general relativity

    Full text link
    It has been shown recently that within the framework of the teleparallel equivalent of general relativity (TEGR) it is possible to define the energy density of the gravitational field. The TEGR amounts to an alternative formulation of Einstein's general relativity, not to an alternative gravity theory. The localizability of the gravitational energy has been investigated in a number of space-times with distinct topologies, and the outcome of these analises agree with previously known results regarding the exact expression of the gravitational energy, and/or with the specific properties of the space-time manifold. In this article we establish a relationship between the expression for the gravitational energy density of the TEGR and the Sparling two-forms, which are known to be closely connected with the gravitational energy. We also show that our expression of energy yields the correct value of gravitational mass contained in the conformal factor of the metric field.Comment: 12 pages, Latex file, no figures, to be published in Gen. Rel. Gra

    Neutron Stars in Teleparallel Gravity

    Full text link
    In this paper we deal with neutron stars, which are described by a perfect fluid model, in the context of the teleparallel equivalent of general relativity. We use numerical simulations to find the relationship between the angular momentum of the field and the angular momentum of the source. Such a relation was established for each stable star reached by the numerical simulation once the code is fed with an equation of state, the central energy density and the ratio between polar and equatorial radii. We also find a regime where linear relation between gravitational angular momentum and moment of inertia (as well as angular velocity of the fluid) is valid. We give the spatial distribution of the gravitational energy and show that it has a linear dependence with the squared angular velocity of the source.Comment: 19 pages, 14 figures. arXiv admin note: text overlap with arXiv:1206.331

    Energy of general 4-dimensional stationary axisymmetric spacetime in the teleparallel geometry

    Get PDF
    The field equation with the cosmological constant term is derived and the energy of the general 4-dimensional stationary axisymmetric spacetime is studied in the context of the hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR). We find that, by means of the integral form of the constraints equations of the formalism naturally without any restriction on the metric parameters, the energy for the asymptotically flat/de Sitter/Anti-de Sitter stationary spacetimes in the Boyer-Lindquist coordinate can be expressed as E=18πSdθdϕ(sinθgθθ+gϕϕ(1/grr)(gθθgϕϕ/r))E=\frac{1}{8\pi}\int_S d\theta d\phi(sin\theta \sqrt{g_{\theta\theta}}+\sqrt{g_{\phi\phi}}-(1/\sqrt{g_{rr}})(\partial{\sqrt{g_ {\theta\theta} g_{\phi\phi}}}/\partial r)). It is surprised to learn that the energy expression is relevant to the metric components grrg_{rr}, gθθg_{\theta\theta} and gϕϕg_{\phi\phi} only. As examples, by using this formula we calculate the energies of the Kerr-Newman (KN), Kerr-Newman Anti-de Sitter (KN-AdS), Kaluza-Klein, and Cveti\v{c}-Youm spacetimes.Comment: 12 page

    Graviton resonances on two-field thick branes

    Get PDF
    This work presents new results about the graviton massive spectrum in two-field thick branes. Analyzing the massive spectra with a relative probability method we have firstly showed the presence of resonance structures and obtained a connection between the thickness of the defect and the lifetimes of such resonances. We obtain another interesting results considering the degenerate Bloch brane solutions. In these thick brane models, we have the emergence of a splitting effect controlled by a degeneracy parameter. When the degeneracy constant tends to a critical value, we have found massive resonances to the gravitational field indicating the existence of modes highly coupled to the brane. We also discussed the influence of the brane splitting effect over the resonance lifetimes.Comment: 15 pages, 8 figure

    Variations of the Energy of Free Particles in the pp-Wave Spacetimes

    Full text link
    We consider the action of exact plane gravitational waves, or pp-waves, on free particles. The analysis is carried out by investigating the variations of the geodesic trajectories of the particles, before and after the passage of the wave. The initial velocities of the particles are non-vanishing. We evaluate numerically the Kinetic energy per unit mass of the free particles, and obtain interesting, quasi-periodic behaviour of the variations of the Kinetic energy with respect to the width λ\lambda of the gaussian that represents the wave. The variation of the energy of the free particle is expected to be exactly minus the variation of the energy of the gravitational field, and therefore provides an estimation of the local variation of the gravitational energy. The investigation is carried out in the context of short bursts of gravitational waves, and of waves described by normalised gaussians, that yield impulsive waves in a certain limit.Comment: 20 pages, 18 figures, further arguments supporting the localizability of the gravitational energy are presented, published in Univers

    On the Black Hole Acceleration in the C-metric Space-time

    Full text link
    We consider the C-metric as a gravitational field configuration that describes an accelerating black hole in the presence of a semi-infinite cosmic string, along the accelerating direction. We adopt the expression for the gravitational energy-momentum developed in the teleparallel equivalent of general relativity (TEGR) and obtain a possible explanation for the acceleration of the black hole. The gravitational energy enclosed by surfaces of constant radius around the black hole is evaluated, and in particular the energy contained within the gravitational horizon is obtained. This energy turns out to be proportional to the square root of the area of the horizon. We find that the gravitational energy of the semi-infinite cosmic string is negative and dominant for large values of the radius of integration. This negative energy may explain the acceleration of the black hole, that moves towards regions of lower gravitational energy along the string.Comment: 24 pages, 4 figures. The article has been revised and simplified; two paragraphs were added in section 5 regarding the notion and definition of gravitational energ

    Casimir-Yang-Mills wormholes in D=2+1D=2+1

    Full text link
    This study presents new three-dimensional traversable wormhole solutions sourced by the Casimir density and pressure related to the quantum vacuum fluctuations in Yang-Mills theory. First, we analyze the noninteracting Casimir effect with an arbitrary state parameter ω\omega and determine a simple constant wormhole shape function. We introduce a new methodology for deforming the state parameter and find well-behaved redshift functions. The wormhole can be interpreted as a legitimate Casimir wormhole with an expected average state parameter of ω=2\omega=2. Then, we investigate the curvature properties, energy conditions, and stability of the wormholes, finding that they are stable only if the radius exceeds a specific value near the throat. Furthermore, we discover a new family of traversable wormhole solutions sourced by the quantum vacuum fluctuations of interacting (confined) Yang-Mills fields with a more complex shape function. Deforming the effective state parameter similarly, we obtain well-behaved redshift functions and wormhole solutions that depend on relevant parameters of the system. Notably, higher string tension results in a larger throat radius, potentially driven by an attempt to deconfine gluons and stretch the wormhole.Comment: 20 pages, 8 figure
    corecore