36 research outputs found

    Hidden Symmetry of the Differential Calculus on the Quantum Matrix Space

    Full text link
    A standard bicovariant differential calculus on a quantum matrix space Mat(m,n)q{\tt Mat}(m,n)_q is considered. The principal result of this work is in observing that the Uqs(glm×gln))qU_q\frak{s}(\frak{gl}_m\times \frak{gl}_n))_q is in fact a Uqsl(m+n)U_q\frak{sl}(m+n)-module differential algebra.Comment: 5 page

    Coadditive differential complexes on quantum groups and quantum spaces

    Full text link
    A regular way to define an additive coproduct (or ``coaddition'') on the q-deformed differential complexes is proposed for quantum groups and quantum spaces related to the Hecke-type R-matrices. Several examples of braided coadditive differential bialgebras (Hopf algebras) are presented.Comment: 9 page

    A Class of Bicovariant Differential Calculi on Hopf Algebras

    Full text link
    We introduce a large class of bicovariant differential calculi on any quantum group AA, associated to AdAd-invariant elements. For example, the deformed trace element on SLq(2)SL_q(2) recovers Woronowicz' 4D±4D_\pm calculus. More generally, we obtain a sequence of differential calculi on each quantum group A(R)A(R), based on the theory of the corresponding braided groups B(R)B(R). Here RR is any regular solution of the QYBE.Comment: 16 page

    Covariant differential complexes on quantum linear groups

    Full text link
    We consider the possible covariant external algebra structures for Cartan's 1-forms on GL_q(N) and SL_q(N). We base upon the following natural postulates: 1. the invariant 1-forms realize an adjoint representation of quantum group; 2. all monomials of these forms possess the unique ordering. For the obtained external algebras we define the exterior derivative possessing the usual nilpotence condition, and the generally deformed version of Leibniz rules. The status of the known examples of GL_q(N)-differential calculi in the proposed classification scheme, and the problems of SL_q(N)-reduction are discussed.Comment: 23 page

    All bicovariant differential calculi on Glq(3,C) and SLq(3,C)

    Full text link
    All bicovariant first order differential calculi on the quantum group GLq(3,C) are determined. There are two distinct one-parameter families of calculi. In terms of a suitable basis of 1-forms the commutation relations can be expressed with the help of the R-matrix of GLq(3,C). Some calculi induce bicovariant differential calculi on SLq(3,C) and on real forms of GLq(3,C). For generic deformation parameter q there are six calculi on SLq(3,C), on SUq(3) there are only two. The classical limit q-->1 of bicovariant calculi on SLq(3,C) is not the ordinary calculus on SL(3,C). One obtains a deformation of it which involves the Cartan-Killing metric.Comment: 24 pages, LaTe

    Tannaka-Krein duality for Hopf algebroids

    Full text link
    We develop the Tannaka-Krein duality for monoidal functors with target in the categories of bimodules over a ring. The \coend of such a functor turns out to be a Hopf algebroid over this ring. Using the result of a previous paper we characterize a small abelian, locally finite rigid monoidal category as the category of rigid comodules over a transitive Hopf algebroid.Comment: 25 pages, final version, to appear in Israel Journal of Mathematic

    Rigidity and defect actions in Landau-Ginzburg models

    Full text link
    Studying two-dimensional field theories in the presence of defect lines naturally gives rise to monoidal categories: their objects are the different (topological) defect conditions, their morphisms are junction fields, and their tensor product describes the fusion of defects. These categories should be equipped with a duality operation corresponding to reversing the orientation of the defect line, providing a rigid and pivotal structure. We make this structure explicit in topological Landau-Ginzburg models with potential x^d, where defects are described by matrix factorisations of x^d-y^d. The duality allows to compute an action of defects on bulk fields, which we compare to the corresponding N=2 conformal field theories. We find that the two actions differ by phases.Comment: 53 pages; v2: clarified exposition of pivotal structures, corrected proof of theorem 2.13, added remark 3.9; version to appear in CM

    (l,q)(l,q)-Deformed Grassmann Field and the Two-dimensional Ising Model

    Full text link
    In this paper we construct the exact representation of the Ising partition function in the form of the SLq(2,R) SL_q(2,R)-invariant functional integral for the lattice free (l,q)(l,q)-fermion field theory (l=q=−1l=q=-1). It is shown that the (l,q)(l,q)-fermionization allows one to re-express the partition function of the eight-vertex model in external field through functional integral with four-fermion interaction. To construct these representations, we define a lattice (l,q,s)(l,q,s)-deformed Grassmann bispinor field and extend the Berezin integration rules to this field. At l=q=−1,s=1l=q=-1, s=1 we obtain the lattice (l,q)(l,q)-fermion field which allows us to fermionize the two-dimensional Ising model. We show that the Gaussian integral over (q,s)(q,s)-Grassmann variables is expressed through the (q,s)(q,s)-deformed Pfaffian which is equal to square root of the determinant of some matrix at q=±1,s=±1q=\pm 1, s=\pm 1.Comment: 24 pages, LaTeX; minor change
    corecore