3 research outputs found

    Temporal variability of settlement in Carapidae larvae at Rangiroa atoll

    Full text link
    Carapidae (or pearlfish) are eel-like fishes living inside different invertebrates, such as holothurians, sea stars or bivalves. In some Polynesian areas where they live in sympatry, several species (Carapus homei, Carapus mourlani, Carapus boraborensis and Encheliophis gracilis) are able to inhabit the same host species. The heterospecific infestation rate is very rare, suggesting that the four species can compete for their hosts. Some differences in settlement period, breeding period and in pelagic larval duration (PLD) could allow better characterisation of the life history of each species. More than 700 larvae were collected during an entire year on the Rangiroa atoll (French Polynesia). Each species was identified; their settlement pattern was examined and their PLD was deduced from otolith (sagittae) increments. In the four collected species, the settlement pattern differed: C. homei and C. mourlani settle on the reef during the entire year, and show an asynchronous and diffuse breeding cycle. C. boraborensis and E. gracilis have a shorter settlement period which could be compatible with breeding synchronisation. As most reef fishes, Carapidae larvae mainly settle during moonless nights. Moreover, each species presents some plasticity, allowing it to settle on the reef under suitable conditions

    A portable cruising speed net: Expanding global collection of sea surface plankton data

    Get PDF
    Plankton are central to planetary ecology, generating 50% of Earth’s atmospheric oxygen and forming the largest system of interconnected life at the base of the marine food chain. Yet, current oceanographic models aimed at predicting global climate change lack high-resolution biological data, emphasizing the need for innovative approaches to collect plankton biodiversity and distribution data over larger spatial, temporal, and taxonomic scales. The significant number of boats, ranging from small sailing yachts to large commercial vessels, that ply the world’s oceans every day could help scientists collect thousands of valuable plankton samples. Traditional Plankton Nets (TPN) are not suited to the speed of a recreational craft cruising in the high seas (i.e., at speeds >2 knots). We developed and validated the efficiency of a lightweight, easily deployable Cruising Speed Net (CSN) that enables the collection of ocean surface micro- and mesoplankton at speeds up to 5 knots. Field testing was conducted during two distinct research cruises along coastal and oceanic latitudinal gradients (SSV Robert C. Seamans in New Zealand and RV Investigator in the south-east Indian Ocean). DNA metabarcoding performed on the collected plankton samples showed the TPN and CSN yielded identical sequence-based diversity at low speed, with the CSN also effective at higher speed for characterizing latitudinal distribution of plankton communities. The CSN represents a valuable new tool for expanding the global collection of plankton data
    corecore