10 research outputs found

    Analysis of the conditional mutual information in ballistic and diffusive non-equilibrium steady-states

    Get PDF
    The conditional mutual information (CMI) I(A ⁣: ⁣CB)\mathcal{I}(A\! : \! C|B) quantifies the amount of correlations shared between AA and CC \emph{given} BB. It therefore functions as a more general quantifier of bipartite correlations in multipartite scenarios, playing an important role in the theory of quantum Markov chains. In this paper we carry out a detailed study on the behavior of the CMI in non-equilibrium steady-states (NESS) of a quantum chain placed between two baths at different temperatures. These results are used to shed light on the mechanisms behind ballistic and diffusive transport regimes and how they affect correlations between different parts of a chain. We carry our study for the specific case of a 1D bosonic chain subject to local Lindblad dissipators at the boundaries. In addition, the chain is also subject to self-consistent reservoirs at each site, which are used to tune the transport between ballistic and diffusive. As a result, we find that the CMI is independent of the chain size LL in the ballistic regime, but decays algebraically with LL in the diffusive case. Finally, we also show how this scaling can be used to discuss the notion of local thermalization in non-equilibrium steady-states

    Better homes and pastures: Human agency and the construction of place in communal bison hunting on the Northern Plains

    No full text

    Paradigm Shifts, Rock Art Studies, and the “Coso Sheep Cult” of Eastern California

    No full text
    corecore