11 research outputs found

    Stable de Sitter vacua in N=2, D=5 supergravity

    Full text link
    We find 5D gauged supergravity theories exhibiting stable de Sitter vacua. These are the first examples of stable de Sitter vacua in higher-dimensional (D>4) supergravity. Non-compact gaugings with tensor multiplets and R-symmetry gauging seem to be the essential ingredients in these models. They are however not sufficient to guarantee stable de Sitter vacua, as we show by investigating several other models. The qualitative behaviour of the potential also seems to depend crucially on the geometry of the scalar manifold.Comment: 26 pages, v2:typos corrected, published versio

    Beauty is Attractive: Moduli Trapping at Enhanced Symmetry Points

    Full text link
    We study quantum effects on moduli dynamics arising from the production of particles which are light at special points in moduli space. The resulting forces trap the moduli at these points, which often exhibit enhanced symmetry. Moduli trapping occurs in time-dependent quantum field theory, as well as in systems of moving D-branes, where it leads the branes to combine into stacks. Trapping also occurs in an expanding universe, though the range over which the moduli can roll is limited by Hubble friction. We observe that a scalar field trapped on a steep potential can induce a stage of acceleration of the universe, which we call trapped inflation. Moduli trapping ameliorates the cosmological moduli problem and may affect vacuum selection. In particular, rolling moduli are most powerfully attracted to the points with the largest number of light particles, which are often the points of greatest symmetry. Given suitable assumptions about the dynamics of the very early universe, this effect might help to explain why among the plethora of possible vacuum states of string theory, we appear to live in one with a large number of light particles and (spontaneously broken) symmetries. In other words, some of the surprising properties of our world might arise not through pure chance or miraculous cancellations, but through a natural selection mechanism during dynamical evolution.Comment: 50 pages, 4 figures; v2: added references and an appendix describing a related classical proces

    D-Sitter Space: Causal Structure, Thermodynamics, and Entropy

    Full text link
    We study the entropy of concrete de Sitter flux compactifications and deformations of them containing D-brane domain walls. We determine the relevant causal and thermodynamic properties of these "D-Sitter" deformations of de Sitter spacetimes. We find a string scale correspondence point at which the entropy localized on the D-branes (and measured by probes sent from an observer in the middle of the bubble) scales the same with large flux quantum numbers as the entropy of the original de Sitter space, and at which Bousso's bound is saturated by the D-brane degrees of freedom (up to order one coefficients) for an infinite range of times. From the geometry of a static patch of D-Sitter space and from basic relations in flux compactifications, we find support for the possibility of a low energy open string description of the static patch of de Sitter space.Comment: 46 pages, harvmac big; 14 figure

    Clean Time-Dependent String Backgrounds from Bubble Baths

    Full text link
    We consider the set of controlled time-dependent backgrounds of general relativity and string theory describing ``bubbles of nothing'', obtained via double analytic continuation of black hole solutions. We analyze their quantum stability, uncover some novel features of their dynamics, identify their causal structure and observables, and compute their particle production spectrum. We present a general relation between squeezed states, such as those arising in cosmological particle creation, and nonlocal theories on the string worldsheet. The bubble backgrounds have various aspects in common with de Sitter space, Rindler space, and moving mirror systems, but constitute controlled solutions of general relativity and string theory with no external forces. They provide a useful theoretical laboratory for studying issues of observables in systems with cosmological horizons, particle creation, and time-dependent string perturbation theory.Comment: 38 pages, harvmac big, 6 figure

    Testing String Theory with CMB

    Full text link
    Future detection/non-detection of tensor modes from inflation in CMB observations presents a unique way to test certain features of string theory. Current limit on the ratio of tensor to scalar perturbations, r=T/S, is r < 0.3, future detection may take place for r > 10^{-2}-10^{-3}. At present all known string theory inflation models predict tensor modes well below the level of detection. Therefore a possible experimental discovery of tensor modes may present a challenge to string cosmology. The strongest bound on r in string inflation follows from the observation that in most of the models based on the KKLT construction, the value of the Hubble constant H during inflation must be smaller than the gravitino mass. For the gravitino mass in the usual range, m_{3/2} < O(1) TeV, this leads to an extremely strong bound r < 10^{-24}. A discovery of tensor perturbations with r > 10^{-3} would imply that the gravitinos in this class of models are superheavy, m_{3/2} > 10^{13} GeV. This would have important implications for particle phenomenology based on string theory.Comment: 13 pages, 2 figure

    An Observational Test for the Anthropic Origin of the Cosmological Constant

    Full text link
    The existence of multiple regions of space beyond the observable Universe (within the so-called "multiverse") where the vacuum energy density takes different values, has been postulated as an explanation for the low non-zero value observed for it in our Universe. It is often argued that our existence pre-selects regions where the cosmological constant is sufficiently small to allow galaxies like the Milky Way to form and intelligent life to emerge. Here we propose a simple empirical test for this anthropic argument within the boundaries of the observable Universe. We make use of the fact that dwarf galaxies formed in our Universe at redshifts as high as z~10 when the mean matter density was larger by a factor of ~10^3 than today. Existing technology enables to check whether planets form in nearby dwarf galaxies and globular clusters by searching for microlensing or transit events of background stars. The oldest of these nearby systems may have formed at z~10. If planets are as common per stellar mass in these descendents as they are in the Milky Way galaxy, then the anthropic argument would be weakened considerably since planets could have formed in our Universe even if the cosmological constant was three orders of magnitude larger than observed. For a flat probability distribution, this would imply that the probability for us to reside in a region where the cosmological constant obtains its observed value is lower than \~10^{-3}. A precise version of the anthropic argument could then be ruled-out at a confidence level of ~99.9%, which constitutes a satisfactory measure of a good experimental test.Comment: JCAP, in pres

    The vacuum bubbles in de Sitter background and black hole pair creation

    Full text link
    We study the possible types of the nucleation of vacuum bubbles. We classify vacuum bubbles in de Sitter background and present some numerical solutions. The thin-wall approximation is employed to obtain the nucleation rate and the radius of vacuum bubbles. With careful analysis we confirm that Parke's formula is also applicable to the large true vacuum bubbles. The nucleation of the false vacuum bubble in de Sitter background is also evaluated. The tunneling process in the potential with degenerate vacua is analyzed as the limiting cases of the large true vacuum bubble and false vacuum bubble. Next, we consider the pair creation of black holes in the background of bubble solutions. We obtain static bubble wall solutions of junction equation with black hole pair. The masses of created black holes are uniquely determined by the cosmological constant and surface tension on the wall. Finally, we obtain the rate of pair creation of black holes.Comment: 3 figures, minor including errors and typos corrected, and refs. adde

    Accidental Inflation in String Theory

    Full text link
    We show that inflation in type IIB string theory driven by the volume modulus can be realized in the context of the racetrack-based Kallosh-Linde model (KL) of moduli stabilization. Inflation here arises through the volume modulus slow-rolling down from a flat hill-top or inflection point of the scalar potential. This situation can be quite generic in the landscape, where by uplifting one of the two adjacent minima one can turn the barrier either to a flat saddle point or to an inflection point supporting eternal inflation. The resulting spectral index is tunable in the range of 0.93 < n_s < 1, and there is only negligible production of primordial gravitational waves r < 10^{-6}. The flatness of the potential in this scenario requires fine-tuning, which may be justified taking into account the exponential reward by volume factors preferring the regions of the universe with the maximal amount of slow-roll inflation. This consideration leads to a tentative prediction of the spectral index ns0.95n_s\approx 0.95 or ns0.93n_s \approx 0.93 depending on whether the potential has a symmetry phi -> - phi or not.Comment: 15 pages, 6 figures, LaTeX, uses RevTex

    Flux Compactifications on Calabi-Yau Threefolds

    Get PDF
    The presence of RR and NS three-form fluxes in type IIB string compactification on a Calabi-Yau orientifold gives rise to a nontrivial superpotential W for the dilaton and complex structure moduli. This superpotential is computable in terms of the period integrals of the Calabi-Yau manifold. In this paper, we present explicit examples of both supersymmetric and nonsupersymmetric solutions to the resulting 4d N=1 supersymmetric no-scale supergravity, including some nonsupersymmetric solutions with relatively small values of W. Our examples arise on orientifolds of the hypersurfaces in WP1,1,1,1,44WP^{4}_{1,1,1,1,4} and WP1,1,2,2,64WP^{4}_{1,1,2,2,6}. They serve as explicit illustrations of several of the ingredients which have played a role in the recent proposals for constructing de Sitter vacua of string theory.Comment: 30 pages, harvmac big; refs and minor comments adde
    corecore