8,494 research outputs found

    Thermoelectric response of Fe1+y_{1+y}Te0.6_{0.6}Se0.4_{0.4}: evidence for strong correlation and low carrier density

    Full text link
    We present a study of the Seebeck and Nernst coefficients of Fe1+y_{1+y}Te1−x_{1-x}Sex_{x} extended up to 28 T. The large magnitude of the Seebeck coefficient in the optimally doped sample tracks a remarkably low normalized Fermi temperature, which, like other correlated superconductors, is only one order of magnitude larger than Tc_c. We combine our data with other experimentally measured coefficients of the system to extract a set of self-consistent parameters, which identify Fe1+y_{1+y}Te0.6_{0.6}Se0.4_{0.4} as a low-density correlated superconductor barely in the clean limit. The system is subject to strong superconducting fluctuations with a sizeable vortex Nernst signal in a wide temperature window.Comment: 4 pages including 4 figure

    Evidence for nodal superconductivity in LaFePO

    Full text link
    In several iron-arsenide superconductors there is strong evidence for a fully gapped superconducting state consistent with either a conventional s-wave symmetry or an unusual s±s_\pm state where there the gap changes sign between the electron and hole Fermi surface sheets. Here we report measurements of the penetration depth λ(T)\lambda(T) in very clean samples of the related iron-phosphide superconductor, LaFePO, at temperatures down to ∼\sim 100 mK. We find that λ(T)\lambda(T) varies almost perfectly linearly with TT strongly suggesting the presence of gap nodes in this compound. Taken together with other data, this suggests the gap function may not be generic to all pnictide superconductors

    Open-source development experiences in scientific software: the HANDE quantum Monte Carlo project

    Full text link
    The HANDE quantum Monte Carlo project offers accessible stochastic algorithms for general use for scientists in the field of quantum chemistry. HANDE is an ambitious and general high-performance code developed by a geographically-dispersed team with a variety of backgrounds in computational science. In the course of preparing a public, open-source release, we have taken this opportunity to step back and look at what we have done and what we hope to do in the future. We pay particular attention to development processes, the approach taken to train students joining the project, and how a flat hierarchical structure aids communicationComment: 6 pages. Submission to WSSSPE
    • …
    corecore