6 research outputs found

    COMBINATION OF ATOMIC FORCE MICROSCOPY AND COMET ASSAY FOR ANALYSIS OF DNA DAMAGE INDUCED BY PDT

    Get PDF
    The aim of the present study was to evaluate the efficiency of photosensitisation induced by two photosensitizers, TMPyP and ClAlPcS2, tested in vitro on the tumor cell line MCF7. The oxidative damage of DNA in MCF-7 cells was analyzed by comet assay (CA) combined with Atomic Force Microscopy (AFM). The ability of detection of apoptotic response detected by Atomic Force Microscopy at the individual molecule level of DNA was successfully demonstrated; when DNA get damaged, cleavage to fragments caused by photodynamic treatment was directly visualized by AFM imaging of individual molecules. Its accuracy and reliability was validated through the comparison with traditional single cell agarose electrophoresis

    EFFECT OF THE ZINC PHTHALOCYANINE MEDIATED PHOTODYNAMIC THERAPY ON CYTOSKELETAL APPARATUS OF HELA CELLS

    Get PDF
    This study deals with the utilization of photosensitizer (λmax ~ 660 nm) from the group of the phthalocyanines, in photodynamic therapy. Effect of the zinc phthalocyanine photosensitizer mediated photodynamic therapy was evaluated in vitro on the tumor cell line – HeLa (cervical cancer cells) using mass spectrometry and atomic force and fluorescent microscopy techniques

    FOTOTOXICKÝ VLIV PORFYRINOVÝCH SENSITIZERŮ A VIDITELNÉHO ZÁŘENÍ NA GRAM-POZITIVNÍ METHICILIN-REZISTENTNÍ KMEN S. AUREUS

    Get PDF
    The use of antimicrobial photodynamic therapy (aPDT) as a therapeutic modality for the treatment of localized microbial infections represents an developing new field. The emergence of strains resistant to antibiotics has provided the necessary impulse for new drug or technology discoveries to combat these resistant compounds. Although the aPDT is still in infancy, its need is still growing. Like PDT, main components of antimicrobial photodynamic therapy are appropriate light, dye called photosensitizer and created reactive oxygen species. In this article photosensitizers TMPyP and ZnTPPS4 are investigated for antimicrobial photodynamic therapy. We tested these porphyrins on bacterial methicilin – resistant strain MRSA alone and bound in complex created with hp-β-cyclodextrin. The light emitting diodes (414 nm) were used at the doses 0 and 150 J/cm2. Tested concentrations were from 0.78 to 100 μM. This experimental work predicated that TMPyP is very successful compound in aPDT. In contrary to ZnTPPS4 which was efficient for eradication of tested gram-positive bacteria only in higher concentrations

    VLIV ULTRAZVUKU NA ÚČINNOST FOTODYNAMICKÉ TERAPIE – IN VITRO STUDIE

    Get PDF
    Photodynamic therapy (PDT) belongs in perspective modalities of cancer treatment. It is based on the tumour-selective accumulation of a photosensitizer followed by irradiation with light of a specific wavelength. PDT is widely developed nowadays due to its high specificity and selectivity along with absence of the unadvisable side-effects. Sonodynamic therapy (SDT) exploits ultrasound to induce cytotoxic effect of sensitizer. In our study we tested the possibility of combination of this therapies and icrease of efficiency. Our results suggest that irradiation in combination with application of therapeutic ultrasound increases production of reactive oxygen species and reduces viability of tumour MCF7 cells, compared to irradiation of ZnTPPS4 only, especially in the case of higher therapeutic doses. In the future, the combination of PDT and SDT can bring a new treatment modality for malignant and also nonmalignant diseases

    ANALÝZA POVRCHU MAGNETICKÝCH MIKROČÁSTIC PROSTŘEDNICTVÍM MIKROSKOPIE ATOMÁRNÍCH SIL

    No full text
    ANALYSIS OF MAGNETIC MICRO PARTICLES SURFACE USING THE ATOMICFORCE MICROSCOPY. Although the magnetic nano and micro particles are studied since seventies, they have gained significant attention in biochemical and medicine applications in last ten years. The main benefit of use magnetic particles lies in spatial manipulation through external magnetic field and selective surface modifciation of large surface area. Our study is focused on microscopic analysis of four magnetic carriers used for DNA isolation visualised by atomic force microscopy and optical microscopy. Based on our results was approved rough and porous particle surface and determined the particle size distribution. The AFM imaging of DNA adsorbed on rough surface of magnetic carrieris discussed
    corecore