4 research outputs found

    Composition and structure of cell wall ulvans recovered from Ulva spp. along the Swedish west coast

    Get PDF
    The cell wall polysaccharide ulvan was isolated from two species of the seaweed Ulva collected along the Swedish west coast. Acidic extraction was benchmarked against hot water extraction with enzymatic purification and against commercial ulvan. Extracted ulvan contained 11–18 % g/g of ash, some protein (up to 1.3 % g N/g) but minimal colored impurities. The ulvans had high molecular weights (660,000–760,000 g/mol) and were composed of 77–79 % g/g carbohydrates, mainly rhamnose, xylose, glucose, glucuronic acid, and iduronic acid. The extraction protocol and the ulvan source strongly impact the molecular weight and the chemical composition. Acidic extraction caused almost complete desulfation of the isolated ulvan while the other method preserved a significant degree of SO3 substituents. Elemental analysis of ash remaining after thermal degradation showed presence of common mineral elements such as Na, Ca, Mg, Al, and K, but none of the heavy metals Pb, Hg, or As

    Cohesin-Mediated Chromatin Interactions and Autoimmunity

    Get PDF
    Proper physiological functioning of any cell type requires ordered chromatin organization. In this context, cohesin complex performs important functions preventing premature separation of sister chromatids after DNA replication. In partnership with CCCTC-binding factor, it ensures insulator activity to organize enhancers and promoters within regulatory chromatin. Homozygous mutations and dysfunction of individual cohesin proteins are embryonically lethal in humans and mice, which limits in vivo research work to embryonic stem cells and progenitors. Conditional alleles of cohesin complex proteins have been generated to investigate their functional roles in greater detail at later developmental stages. Thus, genome regulation enabled by action of cohesin proteins is potentially crucial in lineage cell development, including immune homeostasis. In this review, we provide current knowledge on the role of cohesin complex in leukocyte maturation and adaptive immunity. Conditional knockout and shRNA-mediated inhibition of individual cohesin proteins in mice demonstrated their importance in haematopoiesis, adipogenesis and inflammation. Notably, these effects occur rather through changes in transcriptional gene regulation than through expected cell cycle defects. This positions cohesin at the crossroad of immune pathways including NF-kB, IL-6, and IFNγ signaling. Cohesin proteins emerged as vital regulators at early developmental stages of thymocytes and B cells and after antigen challenge. Human genome-wide association studies are remarkably concordant with these findings and present associations between cohesin and rheumatoid arthritis, multiple sclerosis and HLA-B27 related chronic inflammatory conditions. Furthermore, bioinformatic prediction based on protein-protein interactions reveal a tight connection between the cohesin complex and immune relevant processes supporting the notion that cohesin will unearth new clues in regulation of autoimmunity

    Ensiling of Saccharina latissima and Laminaria digitata with organic acid additives

    No full text
    Seaweeds are a promising source of biomass to provide food, fuels and chemicals in a sustainable future. However, some issues for a biorefinery are that its composition as well as availability varies seasonally and a fresh source cannot be provided all year around. To secure a steady biomass supply the harvest has to be preserved and today drying (especially sun-drying) is commonly used for seaweeds in the carrageenan industry. In colder climates, however, relying on sun-drying could be more problematic and energy intensive drying utilizing hot air is the alternative.An alternative method is ensiling, which is common in agriculture for preserving animal feed. Ensiling is not well researched for seaweeds, though it is receiving more and more attention. It offers a low energy alternative for preservation that relies on acidification by lactic acid bacteria in an anaerobic environment efficiently hampering growth of unwanted microbes. To ensure that the microbial community is beneficial for a good ensiling process additives can be used e.g. inoculum, organic acids, enzymes and sugars. In this study, six different organic acids have been tested at three different concentrations to investigate them as potential additives for ensiling of Saccharina latissima and Laminaria digitata. The content of protein and the monosaccharide profile in the biomass has been analysed before and after 90 days of ensiling to elucidate how the preservation process affects the biomass composition. Such knowledge is important for a biorefinery of seaweeds

    Identifying a marine microalgae with high carbohydrate productivities under stress and potential for efficient flocculation

    No full text
    Microalgal biomass represents a potential third generation feedstock that could be utilised as a source of carbohydrates for fermentative production of a range of platform biochemicals. Identifying microalgal strains with high biomass and carbohydrate productivities while also being amenable to downstream processes is key in improving the feasibility of these processes. Utilising marine microalgae capable of growing in seawater will decrease reliance on freshwater resources and improve the sustainability of production. This study screened several marine microalgae believed to accumulate carbohydrates to find new high performing strains. Four strains had high growth rates and accumulated carbohydrates > 35% DW under stress. The strain Chlorella salina demonstrated the highest biomass and carbohydrate productivity, and alkaline autoflocculation (4 mM NaOH) enabled biomass recoveries > 95% efficiency, resulting in an 8–10 7 concentration of the culture. Under nutrient replete conditions, biomass productivity reached 0.6 g L −1 d −1 , significantly greater than that of nitrogen starved cultures. However, nitrogen starvation rapidly increased carbohydrate content to > 50% DW in 2 days, resulting in carbohydrate productivities > 0.20 g L −1 d −1 . Chlorella salina partitions the products of photosynthesis preferentially into carbohydrate synthesis under nitrogen starvation. A greater understanding of cellular physiology and carbon partitioning in response to nutrient stress will enable better control and optimisation of the bio-processes. This study has identified a potentially high performance marine microalga for carbohydrate production that is also amenable to low-cost harvesting
    corecore