32 research outputs found
The British antibiotic and silver-impregnated catheters for ventriculoperitoneal shunts multi-centre randomised controlled trial (the BASICS trial): study protocol
BACKGROUND: Insertion of a ventriculoperitoneal shunt (VPS) for the treatment of hydrocephalus is one of the most common neurosurgical procedures in the UK, but failures caused by infection occur in approximately 8% of primary cases. VPS infection is associated with considerable morbidity and mortality and its management results in substantial cost to the health service. Antibiotic-impregnated (rifampicin and clindamycin) and silver-impregnated VPS have been developed to reduce infection rates. Whilst there is some evidence showing that such devices may lead to a reduction in VPS infection, there are no randomised controlled trials (RCTs) to support their routine use. METHODS/DESIGN: Overall, 1,200 patients will be recruited from 17 regional neurosurgical units in the UK and Ireland. Patients of any age undergoing insertion of their first VPS are eligible. Patients with previous indwelling VPS, active and on-going cerebrospinal fluid (CSF) or peritoneal infection, multiloculated hydrocephalus requiring multiple VPS or neuroendoscopy, and ventriculoatrial or ventriculopleural shunt planned will be excluded. Patients will be randomised 1:1:1 to either standard silicone (comparator), antibiotic-impregnated, or silver-impregnated VPS. The primary outcome measure is time to VPS infection. Secondary outcome measures include time to VPS failure of any cause, reason for VPS failure (infection, mechanical failure, or patient failure), types of bacterial VPS infection (organism type and antibiotic resistance), and incremental cost per VPS failure averted. DISCUSSION: The British antibiotic and silver-impregnated catheters for ventriculoperitoneal shunts multi-centre randomised controlled trial (the BASICS trial) is the first multi-centre RCT designed to determine whether antibiotic or silver-impregnated VPS reduce early shunt infection compared to standard silicone VPS. The results of this study will be used to inform current neurosurgical practice and may potentially benefit patients undergoing shunt surgery in the future. TRIAL REGISTRATION: International Standard Randomised Controlled Trial Number: ISRCTN49474281
The 5âČ Flanking Region and Intron1 of the Bovine Prion Protein Gene (PRNP) Are Responsible for Negative Feedback Regulation of the Prion Protein
Transcription factors regulate gene expression by controlling the transcription rate. Some genes can repress their own expression to prevent over production of the corresponding protein, although the mechanism and significance of this negative feedback regulation remains unclear. In the present study, we describe negative feedback regulation of the bovine prion protein (PrP) gene PRNP in Japanese Black cattle. The PrP-expressing plasmid pEF-boPrP and luciferase-expressing plasmids containing the partial promoter fragment of PRNP incorporating naturally occurring single-nucleotide or insertion/deletion polymorphisms were transfected into N2a cells. Transfection of pEF-boPrP induced PrP overexpression and decreased the promoter activity of PRNP in the wild-type haplotype (23-bp Del, 12-bp Del, and â47C). Reporter gene assays further demonstrated that the 12- and 23-bp Ins/Del polymorphisms, which are thought to be associated with Sp1 (Specific protein 1) and RP58 (Repressor Protein with a predicted molecular mass of 58 kDa), in intron1 and the upstream region, respectively, and an additional polymorphism (â47CâA) in the Sp1-binding site responded differently to PrP overexpression. With the â47C SNP, the presence of the Del in either the 23-bp Ins/Del or the 12-bp Ins/Del allele was essential for the negative feedback caused by PrP overexpression. Furthermore, deletion mutants derived from the wild-type haplotype showed that nucleotides â315 to +2526, which include the 5âČ-flanking region and exon1, were essential for the response. These results indicate that certain negative feedback response elements are located in these sequences, suggesting that regulation by transcription factors such as Sp1 and RP58 may contribute to the negative feedback mechanism of PRNP
Levetiracetam Reverses Synaptic Deficits Produced by Overexpression of SV2A
Levetiracetam is an FDA-approved drug used to treat epilepsy and other disorders of the nervous system. Although it is known that levetiracetam binds the synaptic vesicle protein SV2A, how drug binding affects synaptic functioning remains unknown. Here we report that levetiracetam reverses the effects of excess SV2A in autaptic hippocampal neurons. Expression of an SV2A-EGFP fusion protein produced a âŒ1.5-fold increase in synaptic levels of SV2, and resulted in reduced synaptic release probability. The overexpression phenotype parallels that seen in neurons from SV2 knockout mice, which experience severe seizures. Overexpression of SV2A also increased synaptic levels of the calcium-sensor protein synaptotagmin, an SV2-binding protein whose stability and trafficking are regulated by SV2. Treatment with levetiracetam rescued normal neurotransmission and restored normal levels of SV2 and synaptotagmin at the synapse. These results indicate that changes in SV2 expression in either direction impact neurotransmission, and suggest that levetiracetam may modulate SV2 protein interactions
Protease-Sensitive Conformers in Broad Spectrum of Distinct PrPSc Structures in Sporadic Creutzfeldt-Jakob Disease Are Indicator of Progression Rate
The origin, range, and structure of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), are largely unknown. To investigate the molecular mechanism responsible for the broad phenotypic variability of sCJD, we analyzed the conformational characteristics of protease-sensitive and protease-resistant fractions of the pathogenic prion protein (PrPSc) using novel conformational methods derived from a conformation-dependent immunoassay (CDI). In 46 brains of patients homozygous for polymorphisms in the PRNP gene and exhibiting either Type 1 or Type 2 western blot pattern of the PrPSc, we identified an extensive array of PrPSc structures that differ in protease sensitivity, display of critical domains, and conformational stability. Surprisingly, in sCJD cases homozygous for methionine or valine at codon 129 of the PRNP gene, the concentration and stability of protease-sensitive conformers of PrPSc correlated with progression rate of the disease. These data indicate that sCJD brains exhibit a wide spectrum of PrPSc structural states, and accordingly argue for a broad spectrum of prion strains coding for different phenotypes. The link between disease duration, levels, and stability of protease-sensitive conformers of PrPSc suggests that these conformers play an important role in the pathogenesis of sCJD
DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France
We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39â3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18â0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon