284 research outputs found

    G313.3+00.3: A New Planetary Nebula discovered by the Australia Telescope Compact Array and the Spitzer Space Telescope

    Full text link
    We present a new planetary nebula, first identified in images from the Australia Telescope Compact Array, although not recognized at that time. Recent observations with the Spitzer Space Telescope during the GLIMPSE Legacy program have rediscovered the object. The high-resolution radio and infrared images enable the identification of the central star or its wind, the recognition of the radio emission as thermal, and the probable presence of polycylic aromatic hydrocarbons in and around the source. These lead to the conclusion that G313.3+00.3 is a planetary nebula. This object is of particular interest because it was discovered solely through radio and mid-infrared imaging, without any optical (or near-infrared) confirmation, and acts as a proof of concept for the discovery of many more highly extinguished planetary nebulae. G313.3+00.3 is well-resolved by both the instruments with which it was identified, and suffers extreme reddening due to its location in the Scutum-Crux spiral arm.Comment: 18 pages, LaTeX (aastex), incl. 8 PostScript (eps) figures and 1 table. Accepted by ApJ (Part 1

    Impact of Pre-Exposure History and Host Genetics on Antibody Avidity Following Norovirus Vaccination

    Get PDF
    Background: Development of high avidity, broadly neutralizing antibodies (Abs) is a priority after vaccination against rapidly evolving, widely disseminated viruses like human norovirus. After vaccination with a multivalent GI.1 and GII.4c norovirus virus-like particle (VLP) vaccine candidate adjuvanted with alum and monophosphoryl lipid A (MPL), blockade Ab titers peaked early, with no increase in titer following a second vaccine dose. Methods: Blockade Ab relative avidity was evaluated by measuring the slope of blockade Ab neutralization curves. Results: Blockade Ab avidity to the GI.1 vaccine component peaked at day 35 (7 days after dose 2). Avidities to heterotypic genogroup I VLPs were not sustained at day 35 after vaccination or GI.1 infection, as measured from archived sera. Only secretor-positive participants maintained high avidity blockade Ab to GI.1 at day 180. Avidity to the GII.4c vaccine component peaked at day 7, remained elevated through day 180, and was not secretor dependent. Avidity to an immunologically novel GII.4 strain VLP correlated with preexisting Ab titer to an ancestral strain Epitope A. Conclusions: Host genetics and pre-exposure history shape norovirus vaccine Ab responses, including blockade Ab avidity. Avidity of potentially neutralizing Ab may be an important metric for evaluating vaccine responses to highly penetrant viruses with cross-reactive serotypes

    Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    Get PDF
    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon re- combination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2-16 keV with 3^3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.Comment: 11 pages, 12 figures, 3 table

    Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    Full text link
    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238^{238}Ue_{e}~<<1.6~mBq/kg, 238^{238}Ul_{l}~<<0.09~mBq/kg, 232^{232}The_{e}~=0.28±0.03=0.28\pm 0.03~mBq/kg, 232^{232}Thl_{l}~=0.25±0.02=0.25\pm 0.02~mBq/kg, 40^{40}K~<<0.54~mBq/kg, and 60^{60}Co~<<0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160±0.0010.160\pm0.001(stat)±0.030\pm0.030(sys) counts.Comment: 13 pages, 3 figures, accepted for publication in Astroparticle Physic
    • …
    corecore