38 research outputs found
Characterization of microRNAs Identified in a Table Grapevine Cultivar with Validation of Computationally Predicted Grapevine miRNAs by miR-RACE
BACKGROUND: Alignment analysis of the Vv-miRNAs identified from various grapevine cultivars indicates that over 30% orthologous Vv-miRNAs exhibit a 1-3 nucleotide discrepancy only at their ends, suggesting that this sequence discrepancy is not a random event, but might mainly derive from divergence of cultivars. With advantages of miR-RACE technology in determining precise sequences of potential miRNAs from bioinformatics prediction, the precise sequences of vv-miRNAs predicted computationally can be verified with miR-RACE in a different grapevine cultivar. This presents itself as a new approach for large scale discovery of precise miRNAs in different grapevine varieties. METHODOLOGY/PRINCIPAL FINDINGS: Among 88 unique sequences of Vv-miRNAs from bioinformatics prediction, 83 (96.3%) were successfully validated with MiR-RACE in grapevine cv. 'Summer Black'. All the validated sequences were identical to their corresponding ones obtained from deep sequencing of the small RNA library of 'Summer Black'. Quantitative RT-PCR analysis of the expressions levels of 10 Vv-miRNA/target gene pairs in grapevine tissues showed some negative correlation trends. Finally, comparison of Vv-miRNA sequences with their orthologs in Arabidopsis and study on the influence of divergent bases of the orthologous miRNAs on their targeting patterns in grapevine were also done. CONCLUSION: The validation of precise sequences of potential Vv-miRNAs from computational prediction in a different grapevine cultivar can be a new way to identify the orthologous Vv-miRNAs. Nucleotide discrepancy of orthologous Vv-miRNAs from different grapevine cultivars normally does not change their target genes. However, sequence variations of some orthologous miRNAs in grapevine and Arabidopsis can change their targeting patterns. These precise Vv-miRNAs sequences validated in our study could benefit some further study on grapevine functional genomics
Evolution of MicroRNA Genes in Oryza sativa and Arabidopsis thaliana: An Update of the Inverted Duplication Model
The origin and evolution of microRNA (miRNA) genes, which are of significance in tuning and buffering gene expressions in a number of critical cellular processes, have long attracted evolutionary biologists. However, genome-wide perspectives on their origins, potential mechanisms of their de novo generation and subsequent evolution remain largely unsolved in flowering plants. Here, genome-wide analyses of Oryza sativa and Arabidopsis thaliana revealed apparently divergent patterns of miRNA gene origins. A large proportion of miRNA genes in O. sativa were TE-related and MITE-related miRNAs in particular, whereas the fraction of these miRNA genes much decreased in A. thaliana. Our results show that the majority of TE-related and pseudogene-related miRNA genes have originated through inverted duplication instead of segmental or tandem duplication events. Based on the presented findings, we hypothesize and illustrate the four likely molecular mechanisms to de novo generate novel miRNA genes from TEs and pseudogenes. Our rice genome analysis demonstrates that non-MITEs and MITEs mediated inverted duplications have played different roles in de novo generating miRNA genes. It is confirmed that the previously proposed inverted duplication model may give explanations for non-MITEs mediated duplication events. However, many other miRNA genes, known from the earlier proposed model, were rather arisen from MITE transpositions into target genes to yield binding sites. We further investigated evolutionary processes spawned from de novo generated to maturely-formed miRNA genes and their regulatory systems. We found that miRNAs increase the tunability of some gene regulatory systems with low gene copy numbers. The results also suggest that gene balance effects may have largely contributed to the evolution of miRNA regulatory systems
Analysis of conserved microRNAs in floral tissues of sexual and apomictic Boechera species
<p>Abstract</p> <p>Background</p> <p>Apomixis or asexual seed formation represents a potentially important agronomic trait whose introduction into crop plants could be an effective way to fix and perpetuate a desirable genotype through successive seed generations. However, the gene regulatory pathways underlying apomixis remain unknown. In particular, the potential function of microRNAs, which are known to play crucial roles in many aspects of plant growth and development, remains to be determined with regards to the switch from sexual to apomictic reproduction.</p> <p>Results</p> <p>Using bioinformatics and microarray validation procedures, 51 miRNA families conserved among angiosperms were identified in <it>Boechera</it>. Microarray assay confirmed 15 of the miRNA families that were identified by bioinformatics techniques. 30 cDNA sequences representing 26 miRNAs could fold back into stable pre-miRNAs. 19 of these pre-miRNAs had miRNAs with <it>Boechera</it>-specific nucleotide substitutions (NSs). Analysis of the Gibbs free energy (ΔG) of these pre-miRNA stem-loops with NSs showed that the <it>Boechera</it>-specific miRNA NSs significantly (p ≤ 0.05) enhance the stability of stem-loops. Furthermore, six transcription factors, the Squamosa promoter binding protein like SPL6, SPL11 and SPL15, Myb domain protein 120 (MYB120), RELATED TO AP2.7 DNA binding (RAP2.7, TOE1 RAP2.7) and TCP family transcription factor 10 (TCP10) were found to be expressed in sexual or apomictic ovules. However, only SPL11 showed differential expression with significant (p ≤ 0.05) up-regulation at the megaspore mother cell (MMC) stage of ovule development in apomictic genotypes.</p> <p>Conclusions</p> <p>This study constitutes the first extensive insight into the conservation and expression of microRNAs in <it>Boechera </it>sexual and apomictic species. The miR156/157 target squamosa promoter binding protein-like 11 (SPL11) was found differentially expressed with significant (p ≤ 0.05) up-regulation at the MMC stage of ovule development in apomictic genotypes. The results also demonstrate that nucleotide changes in mature miRNAs significantly (p ≤ 0.05) enhance the thermodynamic stability of pre-miRNA stem-loops.</p
Evidence for Antisense Transcription Associated with MicroRNA Target mRNAs in Arabidopsis
Antisense transcription is a pervasive phenomenon, but its source and functional significance is largely unknown. We took an expression-based approach to explore microRNA (miRNA)-related antisense transcription by computational analyses of published whole-genome tiling microarray transcriptome and deep sequencing small RNA (smRNA) data. Statistical support for greater abundance of antisense transcription signatures and smRNAs was observed for miRNA targets than for paralogous genes with no miRNA cleavage site. Antisense smRNAs were also found associated with MIRNA genes. This suggests that miRNA-associated “transitivity” (production of small interfering RNAs through antisense transcription) is more common than previously reported. High-resolution (3 nt) custom tiling microarray transcriptome analysis was performed with probes 400 bp 5′ upstream and 3′ downstream of the miRNA cleavage sites (direction relative to the mRNA) for 22 select miRNA target genes. We hybridized RNAs labeled from the smRNA pathway mutants, including hen1-1, dcl1-7, hyl1-2, rdr6-15, and sgs3-14. Results showed that antisense transcripts associated with miRNA targets were mainly elevated in hen1-1 and sgs3-14 to a lesser extent, and somewhat reduced in dcl11-7, hyl11-2, or rdr6-15 mutants. This was corroborated by semi-quantitative reverse transcription PCR; however, a direct correlation of antisense transcript abundance in MIR164 gene knockouts was not observed. Our overall analysis reveals a more widespread role for miRNA-associated transitivity with implications for functions of antisense transcription in gene regulation. HEN1 and SGS3 may be links for miRNA target entry into different RNA processing pathways
Antiviral Silencing and Suppression of Gene Silencing in Plants
RNA silencing is an evolutionary conserved sequence-specific gene inactivation mechanism that contributes to the control of development, maintains heterochromatin, acts in stress responses, DNA repair and defends against invading nucleic acids like transposons and viruses. In plants RNA silencing functions as one of the main immune systems. RNA silencing process involves the small RNAs and trans factor components like Dicers, Argonautes and RNA-dependent RNA poly- merases. To deal with host antiviral silencing responses viruses evolved mecha- nisms to avoid or counteract this, most notably through expression of viral suppressors of RNA silencing. Due to the overlap between endogenous and antiviral silencing pathways while blocking antiviral pathways viruses also impact endogenous silencing processes. Here we provide an overview of antiviral silencing pathway, host factors implicated in it and the crosstalk between antiviral and endogenous branches of silencing. We summarize the current status of knowledge about the viral counter-defense strategies acting at various steps during virus infection in plants with the focus on representative, well studied silencing suppres- sor proteins. Finally we discuss future challenges of the antiviral silencing and counter-defense research field
MicroRNAs play critical roles during plant development and in response to abiotic stresses
MicroRNAs (miRNAs) have been identified as key molecules in regulatory networks. The fine-tuning role of miRNAs in addition to the regulatory role of transcription factors has shown that molecular events during development are tightly regulated. In addition, several miRNAs play crucial roles in the response to abiotic stress induced by drought, salinity, low temperatures, and metals such as aluminium. Interestingly, several miRNAs have overlapping roles with regard to development, stress responses, and nutrient homeostasis. Moreover, in response to the same abiotic stresses, different expression patterns for some conserved miRNA families among different plant species revealed different metabolic adjustments. The use of deep sequencing technologies for the characterisation of miRNA frequency and the identification of new miRNAs adds complexity to regulatory networks in plants. In this review, we consider the regulatory role of miRNAs in plant development and abiotic stresses, as well as the impact of deep sequencing technologies on the generation of miRNA data
A next-generation liquid xenon observatory for dark matter and neutrino physics
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector
Viktor Krivulin. Concerto a richiesta e altre poesie, a cura di Marco Sabbatini
Prima raccolta antologica in italiano di Viktor Krivulin, con saggio introduttivo, nota bio-bibliografica, note ai testi e traduzioni a cura di Marco Sabbatin
Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation
In response to a viral infection, plants up-regulate the expression of AGO1 to counter the infection. As part of the viral counter-defence, the virus leads to the induction of miR168, which inhibits AGO1 mRNA translation
Retrolumbar subcutaneous ependymoma and giant bathing-trunk nevocellular nevus.
BACKGROUND. Subcutaneous ependymomas have been reported rarely in dermatologic reviews and, apparently, were never associated with other cutaneous malformations. METHODS. A 60-year-old woman with a retrolumbar subcutaneous ependymoma and a giant bathing-trunk nevocellular nevus submitted to thorough dermatologic and neurologic investigation. The surgical material was extensively analyzed with light and electron microscope. The literature was reviewed. RESULTS. The tumor fits exactly the classical prerequisites of the clinical and pathologic diagnosis. In contrast with the literature, it developed at 53 years, apparently after a trauma, within a congenital giant nevocellular nevus, at the retrolumbar level; it proved unrelated to any spinal cord alteration and so far appeared quite benign. CONCLUSIONS. The observation of a retrolumbar subcutaneous ependymoma is reported with detail; this tumor exceptionally recognized by dermatologists must be included in the differential diagnosis of lumps arising in the retrolumbar-retrosacral area. The most peculiar feature was its development within a giant bathing-trunk nevocellular nevus; such a fascinating association of two neurectodermal defects, as far as known, is presented for the first time