163 research outputs found

    Range Spectral Filtering in SAR Interferometry: Methods and Limitations

    Get PDF
    A geometrical decorrelation constitutes one of the sources of noise present in Synthetic Aperture Radar (SAR) interferograms. It comes from the different incidence angles of the two images used to form the interferograms, which cause a spectral (frequency) shift between them. A geometrical decorrelation must be compensated by a specific filtering technique known as range filtering, the goal of which is to estimate this spectral displacement and retain only the common parts of the images’ spectra, reducing the noise and improving the quality of the interferograms. Multiple range filters have been proposed in the literature. The most widely used methods are an adaptive filter approach, which estimates the spectral shift directly from the data; a method based on orbital information, which assumes a constant-slope (or flat) terrain; and slope-adaptive algorithms, which consider both orbital information and auxiliary topographic data. Their advantages and limitations are analyzed in this manuscript and, additionally, a new, more refined approach is proposed. Its goal is to enhance the filtering process by automatically adapting the filter to all types of surface variations using a multi-scale strategy. A pair of RADARSAT-2 images that mapped the mountainous area around the Etna volcano (Italy) are used for the study. The results show that filtering accuracy is improved with the new method including the steepest areas and vegetation-covered regions in which the performance of the original methods is limited.This work was supported by the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development (ERFD) under Projects PID2020-117303GB-C21 and PID2020-117303-C22

    Reduction of the model noise in non-linear reconstruction via an efficient calculation of the incident field: application to a 434 MHz Scanner

    Get PDF
    Microwave tomography has been drastically boosted by the development of efficient reconstruction algorithms based on an iterative solution of the corresponding non-linear inverse problem. The accuracy of the electric field radiated by the antennas of a microwave scanner, inside the target area, has been shown to play a significant role on the overall image quality. Taking into account the antenna environment is of prime importance, especially when operating at low frequency. For instance, the wall of a 60 cm diameter whole-body microwave scanner cannot be neglected at 434 MHz, even when using the immersion technique consisting of putting the target in water. Indeed, at such a frequency, the attenuation introduced by water is not sufficient to avoid multiple reflections on the scanner boundary walls. Consequently, the method of calculating the incident field constitutes a key factor in iteratively solving non-linear inverse problems. The selected technique must accommodate high accuracy while maintaining acceptable calculation complexity. In this paper, three distinct techniques are analysed. They are based on the use of i) free-space and ii) non free-space Green's function, and iii) a FDTD approach. All these techniques have been firstly investigated for their 2D version, being used in 2D reconstruction algorithms. However, the scattered field data are collected in a 3D scanner. For assessing the validity of the previous 2D techniques, their results have been compared to both experimentally and 3D-FDTD results.Peer ReviewedPostprint (published version

    On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies

    Get PDF
    This paper presents a synthetic aperture radar (SAR) simulator that is able to generate polarimetric SAR (POLSAR) and polarimetric inverse SAR data of complex targets. It solves the electromagnetic problem via high-frequency approximations, such as physical optics and the physical theory of diffraction, with notable computational efficiency. In principle, any orbital monostatic sensor working at any band, resolution, and operating mode can be modeled. To make simulations more realistic, the target’s bearing and speed are considered, and for the particular case of vessels, even the translational and rotational movements induced by the sea state. All these capabilities make the simulator a powerful tool for supplying large amounts of data with precise scenario information and for testing future sensor configurations. In this paper, the usefulness of the simulator on vessel classification studies is assessed. Several simulated polarimetric images are presented to analyze the potentialities of coherent target decompositions for classifying complex geometries, thus basing an operational algorithm. The limitations highlighted by the results suggest that other approaches, like POLSAR interferometry, should be explored.Peer Reviewe

    Microwave imaging techniques for biomedical applications

    Get PDF
    Microwaves have been considered for medical applications involving the detection of organ movements and changes in tissue water content. More particularly cardiopulmonary interrogation via microwaves has resulted in various sensors monitoring ventricular volume change or movement, arterial wall motion, respiratory movements, pulmonary oedema, etc. In all these applications, microwave sensors perform local measurements and need to be displaced for obtaining an image reproducing the spatial variations of a given quantity. Recently, advances in the area of inverse scattering theory and microwave technology have made possible the development of microwave imaging and tomographic instruments. This paper provides a review of such equipment developed at Suplec and UPC Barcelona, within the frame of successive French-Spanish PICASSO cooperation programs. It reports the most significant results and gives some perspectives for future developments. Firstly, a brief historical survey is given. Then, both technological and numerical aspects are considered. The results of preliminary pre-clinical assessments and in-lab experiments allow to illustrate the capabilities of the existing equipment, as well as its difficulty in dealing with clinical situations. Finally, some remarks on the expected development of microwave imaging techniques for biomedical applications are given.Peer ReviewedPostprint (published version

    Aplicación de técnicas avanzadas de interferometría diferencial SAR para la detección de deformaciones del terreno en Madrid

    Get PDF
    El uso de técnicas avanzadas de interferometría diferencial en un conjunto de imágenes SAR permite la detección de movimientos en el terreno con mayor precisión que las técnicas clásicas. En este documento se presentan los resultados de aplicar una de estas técnicas avanzadas en la ciudad de Madrid, donde ha sido detectada una deformación del terreno asociada a la variación del nivel de agua del acuífero detrítico del Terciario.The advanced Differential INterferometry SAR (DInSAR) techniques are able to detect terrain deformations more accurately than classic DInSAR ones. In this paper, the results obtained with one of this advanced techniques in Madrid city are presented, where an up-down movement has been detected and associated to the water level variation in the aquifer located under Madrid city

    Quantitative images of large biological bodies in microwave tomography by using numerical and real data

    Get PDF
    A new inverse microwave imaging algorithm is presented which has the ability to obtain quantitative dielectric maps of large biological bodies. By using a priori information, obtained with a first order algorithm, the final image is obtained by solving the direct problem and an ill-conditioned system of equations into an iterative procedure. The algorithm has been successfully tested with real data from an experimental scanner.Peer Reviewe

    Database of "in vivo" measurements for quantitative microwave imaging and reconstruction algorithms available

    Get PDF
    Reconstruction algorithms and equipment have been developed for microwave imaging, with emphasis on noninvasive control of deep hyperthermia treatments. Tomographic reconstruction algorithms have also been developed for qualitative spectral and quantitative spatial iterations. The data can be accessed from the e-mail address ftp voltor.upc.es.Peer Reviewe

    Convergence and stability assessment of Newton-Kantorovich reconstrutin algorithms for microwve tomography

    Get PDF
    For newly developed iterative Newton-Kantorovitch reconstruction techniques, the quality of the final image depends on both experimental and model noise. Experimental noise is inherent to any experimental acquisition scheme, while model noise refers to the accuracy of the numerical model, used in the reconstruction process, to reproduce the experimental setup. This paper provides a systematic assessment of the major sources of experimental and model noise on the quality of the final image. This assessment is conducted from experimental data obtained with a microwave circular scanner operating at 2.33 GHz. Targets to be imaged include realistic biological structures, such as a human forearm, as well as calibrated samples for the sake of accuracy evaluation. The results provide a quantitative estimation of the effect of experimental factors, such as temperature of the immersion medium, frequency, signal-to-noise ratio, and various numerical parameters.Peer Reviewe

    Assessment of the Contribution of Polarimetric Persistent Scatterer Interferometry on Sentinel-1 Data

    Get PDF
    Time series of Sentinel-1 data are widely used for monitoring displacements of the Earth surface using persistent scatterer interferometry. By default over land, Sentinel-1 images include two polarimetric channels: VV and VH. However, most works in this application exploit only the VV channel, whereas the VH channel is discarded for its lower amplitude. Thanks to the development of polarimetric persistent scatterer interferometry methods, one can integrate multi-polarisation channels into a single optimal one. Previous studies proved that the number and spatial density of measurement points is increased. In this work, we explore the reason why the VH channel increases the number of measurement points when using the amplitude dispersion ( DA ) as selection criterion. Results obtained over three geographical locations show that the VH channel helps in two ways. In first place, the mean amplitude is increased for targets which have higher amplitude in VH channel, usually associated with rotated elements in the scene. In second place, and more importantly, the amplitude dispersion is decreased over many areas for which the VV channel exhibits fluctuations and peaks. Thanks to the insensitivity of the VH channel to these scene changes, it provides additional measurement points which are reliable despite their low amplitude. The increment of measurement points not only extends the spatial density and enables the detection of active deformation areas not found in the VV results, but also provides more accurate results than only using the VV channel, thanks to the increased density of points, which helps the deformation estimation.This work was supported by the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development (EFRD) under Projects PID2020-117303GB-C21 and PID2020-117303GB-C22. The research was carried out partially in the framework of the ESA-MOST China DRAGON-5 project with ref. 59339

    Bistatic SAR along track interferometry with multiple fixed receivers

    Get PDF
    This paper presents an along-track interferometry (ATI)study for a bistatic or multiestatic SAR configuration with fixed ground receivers. This technique can be useful for sea current estimation or for any problem of Ground Motion Target Indicator (GMTI). The proximity of the ground receivers to the scene allows to be very sensitivite to velocities with small baselines. This paper also proposes a multibaseline approach for ATI able to diferenciate among different velocity contributions in the same resolution cell. At the end of this paper, some results over real acquired bistatic data will be presented and discussed. The data have been acquired using the C-band SAR Bistatic Receiver for INterferometric Applications (SABRINA) and ESA’s ENVISAT satellite, as a transmitter of opportunity.Peer ReviewedPostprint (published version
    • …
    corecore