7,167 research outputs found
The structural and electrical properties of thermally grown TiO2 thin films
We studied the structural and electrical properties of TiO2 thin films grown by thermal oxidation of e-beam evaporated Ti layers on Si substrates. Time of flight secondary ion mass spectroscopy (TOF-SIMS) was used to analyse the interfacial and chemical composition of the TiO2 thin films. Metal oxide semiconductor (MOS) capacitors with Pt or Al as the top electrode were fabricated to analyse electrical properties of the TiO2 thin films. We show that the reactivity of the Al top contact affects electrical properties of the oxide layers. The current transport mechanism in the TiO2 thin films is shown to be PooleâFrenkel (PâF) emission at room temperature. At 84 K, Fowlerâ Nordheim (FâN) tunnelling and trap-assisted tunnelling are observed. By comparing the electrical characteristics of thermally grown TiO2 thin films with the properties of those grown by other techniques reported in the literature, we suggest that, irrespective of the deposition technique, annealing of as-deposited TiO2 in O2 is a similar process to thermal oxidation of Ti thin films
Power Allocation for Conventional and Buffer-Aided Link Adaptive Relaying Systems with Energy Harvesting Nodes
Energy harvesting (EH) nodes can play an important role in cooperative
communication systems which do not have a continuous power supply. In this
paper, we consider the optimization of conventional and buffer-aided link
adaptive EH relaying systems, where an EH source communicates with the
destination via an EH decode-and-forward relay. In conventional relaying,
source and relay transmit signals in consecutive time slots whereas in
buffer-aided link adaptive relaying, the state of the source-relay and
relay-destination channels determines whether the source or the relay is
selected for transmission. Our objective is to maximize the system throughput
over a finite number of transmission time slots for both relaying protocols. In
case of conventional relaying, we propose an offline and several online joint
source and relay transmit power allocation schemes. For offline power
allocation, we formulate an optimization problem which can be solved optimally.
For the online case, we propose a dynamic programming (DP) approach to compute
the optimal online transmit power. To alleviate the complexity inherent to DP,
we also propose several suboptimal online power allocation schemes. For
buffer-aided link adaptive relaying, we show that the joint offline
optimization of the source and relay transmit powers along with the link
selection results in a mixed integer non-linear program which we solve
optimally using the spatial branch-and-bound method. We also propose an
efficient online power allocation scheme and a naive online power allocation
scheme for buffer-aided link adaptive relaying. Our results show that link
adaptive relaying provides performance improvement over conventional relaying
at the expense of a higher computational complexity.Comment: Submitted to IEEE Transactions on Wireless Communication
From natural numbers to numbers and curves in nature â I
The interconnection between number theory, algebra, geometry
and calculus is shown through Fibonacci sequence,
golden section and logarithmic spiral. In this two-part
article, we discuss how simple growth models based on
these entities may be used to explain numbers and curves
abundantly found in nature
From natural numbers to numbers and curves in nature - II
In this second part of the article we discuss how simple growth models based on Fibbonachi numbers, golden section, logarithmic spirals, etc. can explain frequently occuring numbers and curves in living objects. Such mathematical modelling techniques are becoming quite popular in the study of pattern formation in nature
Optimization problems in elementary geometry
Optimization, a principle of nature and engineering design, in real life problems is normally achieved by using numerical methods. In this article we concentrate on some optimization problems in elementary geometry and Newtonian mechanics. These include Heron's problem, Fermat's principle, Brachistochrone problems, Fagano's problem, geodesics on the surface of a parallelepiped, Fermat/Steiner problem, Kakeya problem and the isoperimetric problem. Some of these are very old and historically famous problems, a few of which are still unresolved. Close connection between Euclidean geometry and Newtonian mechanics is revealed by the methods used to solve some of these problems. Examples are included to show how some problems of analysis or algebra can be solved by using the results of these geometrical optimization problems
Curious consequences of simple sequences
Simple sequences and series of natural numbers, their reciprocals, integer powers of natural numbers and their reciprocals are considered. Some interesting physical and mathematical consequences of these are discussed
Magnetic anisotropy, first-order-like metamagnetic transitions and large negative magnetoresistance in the single crystal of GdPdSi
Electrical resistivity (), magnetoresistance (MR), magnetization,
thermopower and Hall effect measurements on the single crystal
GdPdSi, crystallizing in an AlB-derived hexagonal structure are
reported. The well-defined minimum in at a temperature above N\'eel
temperature (T= 21 K) and large negative MR below 3T, reported
earlier for the polycrystals, are reproducible even in single crystals. Such
features are generally uncharacteristic of Gd alloys. In addition, we also
found interesting features in other data, e.g., two-step first-order-like
metamagnetic transitions for the magnetic field along [0001] direction. The
alloy exhibits anisotropy in all these properties, though Gd is a S-state ion.Comment: RevTeX, 5 pages, 6 encapsulated postscript figures; scheduled to be
published in Phy. Rev. B (01 November 1999, B1
Complement-Mediated Selective Tumor Cell Lysis Enabled by Bi-Functional RNA Aptamers
Unlike microbes that infect the human body, cancer cells are descended from normal cells and are not easily recognizable as âforeignâ by the immune system of the host. However, if the malignant cells can be specifically earmarked for attack by a synthetic âdesignatorâ, the powerful effector mechanisms of the immune response can be conscripted to treat cancer. To implement this strategy, we have been developing aptamer-derived molecular adaptors to invoke synthetic immune responses against cancer cells. Here we describe multi-valent aptamers that simultaneously bind target molecules on the surface of cancer cells and an activated complement protein, which would tag the target molecules and their associated cells as âforeignâ and trigger multiple effector mechanisms. Increased deposition of the complement proteins on the surface of cancer cells via aptamer binding to membrane targets could induce the formation of the membrane attack complex or cytotoxic degranulation by phagocytes and natural killer cells, thereby causing irreversible destruction of the targeted cells. Specifically, we designed and constructed a bi-functional aptamer linking EGFR and C3b/iC3b, and used it in a cell-based assay to cause lysis of MDA-MB-231 and BT-20 breast cancer cells, with either human or mouse serum as the source of complement factors
Magnetic behavior of single crystalline HoPdSi
The magnetic behavior of single-crystal HoPdSi, crystallizing in an
AlB-derived hexagonal structure, is investigated by magnetic susceptibility
() and electrical resistivity () measurements along two directions.
There is no dramatic anisotropy in the high temperature Curie-Weiss parameter
or in the and isothermal magnetization data, though there is a
noticeable anisotropy in the magnitude of between two perpendicular
orientations. The degree of anisotropy is overall less prominent than in the Gd
(which is an S-state ion!) and Tb analogues. A point of emphasis is that this
compound undergoes long range magnetic ordering below 8 K as in the case of
analogous Gd and Dy compounds. Considering this fact for these compounds with
well-localised f-orbital, the spin glass freezing noted for isomorphous U
compounds in the recent literature could be attributed to the role of the
f-ligand hybridization, rather than just Pd-Si disorder.Comment: Physical Review B, in pres
- âŠ