1,725 research outputs found

    Energetic disorder at the metal/organic semiconductor interface

    Full text link
    The physics of organic semiconductors is dominated by the effects of energetic disorder. We show that image forces reduce the electrostatic component of the total energetic disorder near an interface with a metal electrode. Typically, the variance of energetic disorder is dramatically reduced at the first few layers of organic semiconductor molecules adjacent to the metal electrode. Implications for charge injection into organic semiconductors are discussed.Comment: 9 pages, 2 figure

    Photorefractivity in polymers

    Get PDF

    Transient behavior of photorefractive gratings in a polymer

    Get PDF
    The transient behavior of photorefractive gratings in the polymer composite poly(N-vinyl carbazole) (PVK), 2,4,7-trinitro-9-fluorenone (TNF), and N,N-diethyl-para-nitroaniline (EPNA) doped with various amounts of 4-(diethylamino)benzaldehyde diphenylhydrazone (DEH) is presented. The influence on the hole drift mobility due to the change in the trap density induced by DEH, was directly measured. (C) 1995 American Institute of Physics

    Performance of a polymer light-emitting diode with enhanced charge carrier mobility

    Get PDF
    The device characteristics of a polymer light-emitting diode (PLED) based on a poly(p-phenylene vinylene) (PPV) derivative with an enhanced charge carrier mobility have been investigated. Improvement of the mobility, which has been obtained by a decrease of the energetic disorder in the polymer, is expected to increase the power efficiency of a PLED. However, it is demonstrated that an increased mobility leads to a decrease as well as to a slower rise of the quantum efficiency with voltage. This performance reduction is explained in terms of an increased quenching of the electroluminescence (EL) at the cathode.
    • …
    corecore