4 research outputs found
Recommended from our members
Global, regional, and national age-specific progress towards the 2020 milestones of the WHO End TB Strategy: a systematic analysis for the Global Burden of Disease Study 2021
Background
Global evaluations of the progress towards the WHO End TB Strategy 2020 interim milestones on mortality (35% reduction) and incidence (20% reduction) have not been age specific. We aimed to assess global, regional, and national-level burdens of and trends in tuberculosis and its risk factors across five separate age groups, from 1990 to 2021, and to report on age-specific progress between 2015 and 2020.
Methods
We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 (GBD 2021) analytical framework to compute age-specific tuberculosis mortality and incidence estimates for 204 countries and territories (1990–2021 inclusive). We quantified tuberculosis mortality among individuals without HIV co-infection using 22 603 site-years of vital registration data, 1718 site-years of verbal autopsy data, 825 site-years of sample-based vital registration data, 680 site-years of mortality surveillance data, and 9 site-years of minimally invasive tissue sample (MITS) diagnoses data as inputs into the Cause of Death Ensemble modelling platform. Age-specific HIV and tuberculosis deaths were established with a population attributable fraction approach. We analysed all available population-based data sources, including prevalence surveys, annual case notifications, tuberculin surveys, and tuberculosis mortality, in DisMod-MR 2.1 to produce internally consistent age-specific estimates of tuberculosis incidence, prevalence, and mortality. We also estimated age-specific tuberculosis mortality without HIV co-infection that is attributable to the independent and combined effects of three risk factors (smoking, alcohol use, and diabetes). As a secondary analysis, we examined the potential impact of the COVID-19 pandemic on tuberculosis mortality without HIV co-infection by comparing expected tuberculosis deaths, modelled with trends in tuberculosis deaths from 2015 to 2019 in vital registration data, with observed tuberculosis deaths in 2020 and 2021 for countries with available cause-specific mortality data.
Findings
We estimated 9·40 million (95% uncertainty interval [UI] 8·36 to 10·5) tuberculosis incident cases and 1·35 million (1·23 to 1·52) deaths due to tuberculosis in 2021. At the global level, the all-age tuberculosis incidence rate declined by 6·26% (5·27 to 7·25) between 2015 and 2020 (the WHO End TB strategy evaluation period). 15 of 204 countries achieved a 20% decrease in all-age tuberculosis incidence between 2015 and 2020, eight of which were in western sub-Saharan Africa. When stratified by age, global tuberculosis incidence rates decreased by 16·5% (14·8 to 18·4) in children younger than 5 years, 16·2% (14·2 to 17·9) in those aged 5–14 years, 6·29% (5·05 to 7·70) in those aged 15–49 years, 5·72% (4·02 to 7·39) in those aged 50–69 years, and 8·48% (6·74 to 10·4) in those aged 70 years and older, from 2015 to 2020. Global tuberculosis deaths decreased by 11·9% (5·77 to 17·0) from 2015 to 2020. 17 countries attained a 35% reduction in deaths due to tuberculosis between 2015 and 2020, most of which were in eastern Europe (six countries) and central Europe (four countries). There was variable progress by age: a 35·3% (26·7 to 41·7) decrease in tuberculosis deaths in children younger than 5 years, a 29·5% (25·5 to 34·1) decrease in those aged 5–14 years, a 15·2% (10·0 to 20·2) decrease in those aged 15–49 years, a 7·97% (0·472 to 14·1) decrease in those aged 50–69 years, and a 3·29% (–5·56 to 9·07) decrease in those aged 70 years and older. Removing the combined effects of the three attributable risk factors would have reduced the number of all-age tuberculosis deaths from 1·39 million (1·28 to 1·54) to 1·00 million (0·703 to 1·23) in 2020, representing a 36·5% (21·5 to 54·8) reduction in tuberculosis deaths compared to those observed in 2015. 41 countries were included in our analysis of the impact of the COVID-19 pandemic on tuberculosis deaths without HIV co-infection in 2020, and 20 countries were included in the analysis for 2021. In 2020, 50 900 (95% CI 49 700 to 52 400) deaths were expected across all ages, compared to an observed 45 500 deaths, corresponding to 5340 (4070 to 6920) fewer deaths; in 2021, 39 600 (38 300 to 41 100) deaths were expected across all ages compared to an observed 39 000 deaths, corresponding to 657 (–713 to 2180) fewer deaths.
Interpretation
Despite accelerated progress in reducing the global burden of tuberculosis in the past decade, the world did not attain the first interim milestones of the WHO End TB Strategy in 2020. The pace of decline has been unequal with respect to age, with older adults (ie, those aged >50 years) having the slowest progress. As countries refine their national tuberculosis programmes and recalibrate for achieving the 2035 targets, they could consider learning from the strategies of countries that achieved the 2020 milestones, as well as consider targeted interventions to improve outcomes in older age groups
Hematopoietic Stem Cell Therapy for Wiskott–Aldrich Syndrome: Improved Outcome and Quality of Life
Kanwaldeep K Mallhi,1– 3 Aleksandra Petrovic,1,2,4,* Hans D Ochs2,5,* 1Fred Hutchinson Cancer Research Center, Seattle, WA, USA; 2Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; 3Division of Hematology and Oncology, Seattle Children’s Hospital, Seattle, WA, USA; 4Division of Immunology and Division of Hematology and Oncology, Seattle Children’s Hospital, Seattle, WA, USA; 5Seattle Children’s Research Institute, Seattle, WA, USA*These authors contributed equally to this workCorrespondence: Hans D OchsDepartment of Pediatrics, University of Washington School of Medicine, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101-1304, USAEmail [email protected]: The Wiskott–Aldrich syndrome (WAS) is an X-linked disorder caused by mutations in the WAS gene resulting in congenital thrombocytopenia, eczema, recurrent infections and an increased incidence of autoimmune diseases and malignancies. Without curative therapies, affected patients have diminished life expectancy and reduced quality of life. Since WAS protein (WASP) is constitutively expressed only in hematopoietic stem cell-derived lineages, hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) are well suited to correct the hematologic and immunologic defects. Advances in high-resolution HLA typing, new techniques to prevent GvHD allowing the use of haploidentical donors, and the introduction of reduced intensity conditioning regimens with myeloablative features have increased overall survival (OS) to over 90%. The development of GT for WAS has provided basic knowledge into vector selection and random integration of various viral vectors into the genome, with the possibility of inducing leukemogenesis. After trials and errors, inactivating lentiviral vectors carrying the WAS gene were successfully evaluated in clinical trials, demonstrating cure of the disease except for insufficient resolution of the platelet defect. Thus, 50 years of clinical evaluation, genetic exploration and extensive clinical trials, a lethal syndrome has turned into a curable disorder.Keywords: Wiskott–Aldrich syndrome, WAS, X-linked thrombocytopenia, XLT, X-linked neutropenia, XLN, hematopoietic stem cell transplantation, HSCT, reduced intensity conditioning, gene therapy, GT, lentiviral vector