1,469 research outputs found
Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations.
International audienceAerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean basin or land stations in the region from multi-year ground-based AERONET observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angström Exponent (AAE) dataset is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This dataset covers the 17-yr period 1996-2012 with most data being from 2003-2011 (~89% of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm > 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angström exponent < 1.0 in order to study absorption by carbonaceous aerosols. The SSA dataset includes AERONET level-2 products. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 ± 0.01 (resp. 0.040 ± 0.01) and 0.050 ± 0.01 (0.055 ± 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to ~0.94-0.95 ± 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA ~0.89-0.90 ± 0.04). The aerosol Absorption Angström Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate a possible East-West gradient, with higher values over the eastern basin (AAEEast = 1.39/AAEWest = 1.33). The North-South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols
Strongly quadrature-dependent noise in superconducting micro-resonators measured at the vacuum-noise limit
We measure frequency- and dissipation-quadrature noise in superconducting
lithographed microwave resonators with sensitivity near the vacuum noise level
using a Josephson parametric amplifier. At an excitation power of 100~nW, these
resonators show significant frequency noise caused by two-level systems. No
excess dissipation-quadrature noise (above the vacuum noise) is observed to our
measurement sensitivity. These measurements demonstrate that the excess
dissipation-quadrature noise is negligible compared to vacuum fluctuations, at
typical readout powers used in micro-resonator applications. Our results have
important implications for resonant readout of various devices such as
detectors, qubits and nano-mechanical oscillators.Comment: 13 pages, 4 figure
Patterned silicon substrates: a common platform for room temperature GaN and ZnO polariton lasers
A new platform for fabricating polariton lasers operating at room temperature
is introduced: nitride-based distributed Bragg reflectors epitaxially grown on
patterned silicon substrates. The patterning allows for an enhanced strain
relaxation thereby enabling to stack a large number of crack-free AlN/AlGaN
pairs and achieve cavity quality factors of several thousands with a large
spatial homogeneity. GaN and ZnO active regions are epitaxially grown thereon
and the cavities are completed with top dielectric Bragg reflectors. The two
structures display strong-coupling and polariton lasing at room temperature and
constitute an intermediate step in the way towards integrated polariton
devices
Quantum Fluctuations in the Chirped Pendulum
An anharmonic oscillator when driven with a fast, frequency chirped voltage
pulse can oscillate with either small or large amplitude depending on whether
the drive voltage is below or above a critical value-a well studied classical
phenomenon known as autoresonance. Using a 6 GHz superconducting resonator
embedded with a Josephson tunnel junction, we have studied for the first time
the role of noise in this non-equilibrium system and find that the width of the
threshold for capture into autoresonance decreases as the square root of T, and
saturates below 150 mK due to zero point motion of the oscillator. This unique
scaling results from the non-equilibrium excitation where fluctuations, both
quantum and classical, only determine the initial oscillator motion and not its
subsequent dynamics. We have investigated this paradigm in an electrical
circuit but our findings are applicable to all out of equilibrium nonlinear
oscillators.Comment: 5 pages, 4 figure
Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies.
Colour pattern is the main trait that drives mate recognition between Heliconius species that are phylogenetically close. However, when this cue is compromised such as in cases of mimetic, sympatric and closely related species, alternative mating signals must evolve to ensure reproductive isolation and species integrity. The closely related species Heliconius melpomene malleti and H. timareta florencia occur in the same geographical region, and despite being co-mimics, they display strong reproductive isolation. In order to test which cues differ between species, and potentially contribute to reproductive isolation, we quantified differences in the wing phenotype and the male chemical profile. As expected, the wing colour pattern was indistinguishable between the two species, while the chemical profile of the androconial and genital males' extracts showed marked differences. We then conducted behavioural experiments to study the importance of these signals in mate recognition by females. In agreement with our previous results, we found that chemical blends and not wing colour pattern drive the preference of females for conspecific males. Also, experiments with hybrid males and females suggested an important genetic component for both chemical production and preference. Altogether, these results suggest that chemicals are the major reproductive barrier opposing gene flow between these two sister and co-mimic species
Fourier Transform Scanning Tunneling Spectroscopy: the possibility to obtain constant energy maps and the band dispersion using a local measurement
We present here an overview of the Fourier Transform Scanning Tunneling
spectroscopy technique (FT-STS). This technique allows one to probe the
electronic properties of a two-dimensional system by analyzing the standing
waves formed in the vicinity of defects. We review both the experimental and
theoretical aspects of this approach, basing our analysis on some of our
previous results, as well as on other results described in the literature. We
explain how the topology of the constant energy maps can be deduced from the FT
of dI/dV map images which exhibit standing waves patterns. We show that not
only the position of the features observed in the FT maps, but also their shape
can be explained using different theoretical models of different levels of
approximation. Thus, starting with the classical and well known expression of
the Lindhard susceptibility which describes the screening of electron in a free
electron gas, we show that from the momentum dependence of the susceptibility
we can deduce the topology of the constant energy maps in a joint density of
states approximation (JDOS). We describe how some of the specific features
predicted by the JDOS are (or are not) observed experimentally in the FT maps.
The role of the phase factors which are neglected in the rough JDOS
approximation is described using the stationary phase conditions. We present
also the technique of the T-matrix approximation, which takes into account
accurately these phase factors. This technique has been successfully applied to
normal metals, as well as to systems with more complicated constant energy
contours. We present results recently obtained on graphene systems which
demonstrate the power of this technique, and the usefulness of local
measurements for determining the band structure, the map of the Fermi energy
and the constant-energy maps.Comment: 33 pages, 15 figures; invited review article, to appear in Journal of
Physics D: Applied Physic
Tunable resonators for quantum circuits
We have designed, fabricated and measured high-Q coplanar
waveguide microwave resonators whose resonance frequency is made tunable with
magnetic field by inserting a DC-SQUID array (including 1 or 7 SQUIDs) inside.
Their tunability range is 30% of the zero field frequency. Their quality factor
reaches up to 3. We present a model based on thermal fluctuations
that accounts for the dependance of the quality factor with magnetic field.Comment: subm. to JLTP (Proc. of LTD12 conference
Phase preserving amplification near the quantum limit with a Josephson Ring Modulator
Recent progress in solid state quantum information processing has stimulated
the search for ultra-low-noise amplifiers and frequency converters in the
microwave frequency range, which could attain the ultimate limit imposed by
quantum mechanics. In this article, we report the first realization of an
intrinsically phase-preserving, non-degenerate superconducting parametric
amplifier, a so far missing component. It is based on the Josephson ring
modulator, which consists of four junctions in a Wheatstone bridge
configuration. The device symmetry greatly enhances the purity of the
amplification process and simplifies both its operation and analysis. The
measured characteristics of the amplifier in terms of gain and bandwidth are in
good agreement with analytical predictions. Using a newly developed noise
source, we also show that our device operates within a factor of three of the
quantum limit. This development opens new applications in the area of quantum
analog signal processing
Evidence for coexistence of the superconducting gap and the pseudo - gap in Bi-2212 from intrinsic tunneling spectroscopy
We present intrinsic tunneling spectroscopy measurements on small
BiSrCaCuO mesas. The tunnel conductance curves show both
sharp peaks at the superconducting gap voltage and broad humps representing the
-axis pseudo-gap. The superconducting gap vanishes at , while the
pseudo-gap exists both above and below . Our observation implies that the
superconducting and pseudo-gaps represent different coexisting phenomena.Comment: 5 pages, 4 figure
- …