71 research outputs found
Harvesting Candidate Genes Responsible for Serious Adverse Drug Reactions from a Chemical-Protein Interactome
Identifying genetic factors responsible for serious adverse drug reaction (SADR) is of critical importance to personalized medicine. However, genome-wide association studies are hampered due to the lack of case-control samples, and the selection of candidate genes is limited by the lack of understanding of the underlying mechanisms of SADRs. We hypothesize that drugs causing the same type of SADR might share a common mechanism by targeting unexpectedly the same SADR-mediating protein. Hence we propose an approach of identifying the common SADR-targets through constructing and mining an in silico chemical-protein interactome (CPI), a matrix of binding strengths among 162 drug molecules known to cause at least one type of SADR and 845 proteins. Drugs sharing the same SADR outcome were also found to possess similarities in their CPI profiles towards this 845 protein set. This methodology identified the candidate gene of sulfonamide-induced toxic epidermal necrolysis (TEN): all nine sulfonamides that cause TEN were found to bind strongly to MHC I (Cw*4), whereas none of the 17 control drugs that do not cause TEN were found to bind to it. Through an insight into the CPI, we found the Y116S substitution of MHC I (B*5703) enhances the unexpected binding of abacavir to its antigen presentation groove, which explains why B*5701, not B*5703, is the risk allele of abacavir-induced hypersensitivity. In conclusion, SADR targets and the patient-specific off-targets could be identified through a systematic investigation of the CPI, generating important hypotheses for prospective experimental validation of the candidate genes
Polymorphisms of Pyrimidine Pathway Enzymes Encoding Genes and HLA-B*40∶01 Carriage in Stavudine-Associated Lipodystrophy in HIV-Infected Patients
Altres ajuts: Fundación para la Investigación y Prevención del SIDA en España (FIPSE 36610, 36572/06); Red de Investigación en SIDA (RIS RD12/0017/0005, RD12/0017/0014).To assess in a cohort of Caucasian patients exposed to stavudine (d4T) the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*40∶01 carriage with HIV/Highly active antiretroviral therapy (HAART)-associated lipodystrophy syndrome (HALS). Three-hundred and thirty-six patients, 187 with HALS and 149 without HALS, and 72 uninfected subjects were recruited. The diagnosis of HALS was performed following the criteria of the Lipodystrophy Severity Grading Scale. Polymorphisms in the thymidylate synthase (TS) and methylene-tetrahydrofolate reductase (MTHFR) genes were determined by direct sequencing, HLA-B genotyping by PCR-SSOr Luminex Technology, and intracellular levels of stavudine triphosphate (d4T-TP) by a LC-MS/MS assay method. HALS was associated with the presence of a low expression TS genotype polymorphism (64.7% vs. 42.9%, OR = 2.43; 95%CI: 1.53-3.88, P<0.0001). MTHFR gene polymorphisms and HLA-B*40∶01 carriage were not associated with HALS or d4T-TP intracellular levels. Low and high expression TS polymorphisms had different d4T-TP intracellular levels (25.60 vs. 13.60 fmol/10 6 cells, P<0.0001). Independent factors associated with HALS were(OR [95%CI]: (a) Combined TS and MTHFR genotypes (p = 0.006, reference category (ref.): 'A+A'; OR for 'A+B' vs. ref.: 1.39 [0.69-2.80]; OR for 'B+A' vs. ref.: 2.16 [1.22-3.83]; OR for 'B+B' vs. ref.: 3.13, 95%CI: 1.54-6.35), (b) maximum viral load ≥5 log10 (OR: 2.55, 95%CI: 1.56-4.14, P = 0.001), (c) use of EFV (1.10 [1.00-1.21], P = 0.008, per year of use). HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*40∶01 carriage in Caucasian patients with long-term exposure to stavudine
MHC-I peptides get out of the groove and enable a novel mechanism of HIV-1 escape
Major histocompatibility complex class I (MHC-I) molecules play a crucial role in immunity by capturing peptides for presentation to T cells and natural killer (NK) cells. The peptide termini are tethered within the MHC-I antigen-binding groove, but it is unknown whether other presentation modes occur. Here we show that 20% of the HLA-B*57:01 peptide repertoire comprises N-terminally extended sets characterized by a common motif at position 1 (P1) to P2. Structures of HLA-B*57:01 presenting N-terminally extended peptides, including the immunodominant HIV-1 Gag epitope TW10 (TSTLQEQIGW), showed that the N terminus protrudes from the peptide-binding groove. The common escape mutant TSNLQEQIGW bound HLA-B*57:01 canonically, adopting a dramatically different conformation than the TW10 peptide. This affected recognition by killer cell immunoglobulin-like receptor (KIR) 3DL1 expressed on NK cells. We thus define a previously uncharacterized feature of the human leukocyte antigen class I (HLA-I) immunopeptidome that has implications for viral immune escape. We further suggest that recognition of the HLA-B*57:01-TW10 epitope is governed by a 'molecular tension' between the adaptive and innate immune systems
Cytomegalovirus (CMV) epitope-specific CD4(+) T cells are inflated in HIV(+) CMV(+) subjects
Select CMV epitopes drive life-long CD8(+) T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4(+) T cells specific for human CMV (HCMV) are elevated in HIV(+) HCMV(+) subjects. To determine whether HCMV epitope-specific CD4(+) T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4(+) T cells in coinfected HLA-DR7(+) long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4(+) T cells were inflated among these HIV(+) subjects compared with those from an HIV(-) HCMV(+) HLA-DR7(+) cohort or with HLA-DR7-restricted CD4(+) T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4(+) T cells consisted of effector memory or effector memory-RA(+) subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX3CR1, CD38, or HLA-DR but less often coexpressed CD38(+) and HLA-DR(+) The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4(+) T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease
Common genetic variation and the control of HIV-1 in humans
To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians
Relationship between CD4 T cell turnover, cellular differentiation and HIV persistence during ART
The precise role of CD4 T cell turnover in maintaining HIV persistence during antiretroviral therapy (ART) has not yet been well characterized. In resting CD4 T cell subpopulations from 24 HIV-infected ART-suppressed and 6 HIV-uninfected individuals, we directly measured cellular turnover by heavy water labeling, HIV reservoir size by integrated HIV-DNA (intDNA) and cell-associated HIV-RNA (caRNA), and HIV reservoir clonality by proviral integration site sequencing. Compared to HIV-negatives, ART-suppressed individuals had similar fractional replacement rates in all subpopulations, but lower absolute proliferation rates of all subpopulations other than effector memory (TEM) cells, and lower plasma IL-7 levels (p = 0.0004). Median CD4 T cell half-lives decreased with cell differentiation from naïve to TEM cells (3 years to 3 months, p<0.001). TEM had the fastest replacement rates, were most highly enriched for intDNA and caRNA, and contained the most clonal proviral expansion. Clonal proviruses detected in less mature subpopulations were more expanded in TEM, suggesting that they were maintained through cell differentiation. Earlier ART initiation was associated with lower levels of intDNA, caRNA and fractional replacement rates. In conclusion, circulating integrated HIV proviruses appear to be maintained both by slow turnover of immature CD4 subpopulations, and by clonal expansion as well as cell differentiation into effector cells with faster replacement rates
- …