5 research outputs found

    Coreceptor Choice and T Cell Depletion by R5, X4, and R5X4 HIV-1 Variants in CCR5-Deficient (CCR5Δ32) and Normal Human Lymphoid Tissue

    Get PDF
    AbstractCoreceptor utilization by HIV-1 is an important determinant of pathogenesis. However, coreceptor selectivity is defined in vitro, while in vivo critical pathogenic events occur in lymphoid tissues. Using pharmacological inhibitors, we recently provided evidence that coreceptor selectivity by the R5X4 dual-tropic isolate 89.6 was more restricted in ex vivo infected lymphoid tissue than in vitro [S. Glushakova, Y. Yi, J. C. Grivel, A. Singh, D. Schols, E. De Clercq, R. G. Collman, and L. Margolis (1999). J. Clin. Invest. 104, R7–R11]. Here we extend those observations using CCR5-deficient (CCR5Δ32) lymphoid tissue as well as additional primary isolates. We definitively show that neither CCR5 nor secondary coreceptors used in vitro mediate 89.6 infection in lymphoid tissue. We also demonstrate that restricted coreceptor use in lymphoid tissue ex vivo compared with in vitro utilization occurs with other dual-tropic primary isolates and is not unique to 89.6. For all strains tested that are dual tropic in vitro, severe CD4 T cell depletion in lymphoid tissue correlated with preferential CXCR4 use in this ex vivo system

    Protection against Mucosal Simian Immunodeficiency Virus SIV(mac251) Challenge by Using Replicating Adenovirus-SIV Multigene Vaccine Priming and Subunit Boosting

    No full text
    Whereas several recent AIDS vaccine strategies have protected rhesus macaques against a pathogenic simian/human immunodeficiency virus (SHIV)(89.6P) challenge, similar approaches have provided only modest, transient reductions in viral burden after challenge with virulent, pathogenic SIV, which is more representative of HIV infection of people. We show here that priming with replicating adenovirus recombinants encoding SIV env/rev, gag, and/or nef genes, followed by boosting with SIV gp120 or an SIV polypeptide mimicking the CD4 binding region of the envelope, protects rhesus macaques from intrarectal infection with the highly pathogenic SIV(mac251). Using trend analysis, significant reductions in acute-phase and set point viremia were correlated with anti-gp120 antibody and cellular immune responses, respectively. Within immunization groups exhibiting significant protection, a subset (39%) of macaques have exhibited either no viremia, cleared viremia, or controlled viremia at the threshold of detection, now more than 40 weeks postchallenge. This combination prime-boost strategy, utilizing replication competent adenovirus, is a promising alternative for HIV vaccine development

    Potent, Persistent Induction and Modulation of Cellular Immune Responses in Rhesus Macaques Primed with Ad5hr-Simian Immunodeficiency Virus (SIV) env/rev, gag, and/or nef Vaccines and Boosted with SIV gp120

    No full text
    Immunity elicited by multicomponent vaccines delivered by replication-competent Ad5hr-simian immunodeficiency virus (SIV) recombinants was systematically investigated. Rhesus macaques were immunized mucosally at weeks 0 and 12 with Ad5hr-SIV(smH4) env/rev, with or without Ad5hr-SIV(mac239) gag or Ad5hr-SIV(mac239) nef, or with all three recombinants. The total Ad5hr dosage was comparably adjusted among all animals with empty Ad5hr-ΔE3 vector. The macaques were boosted with SIV gp120 in monophosphoryl A-stable emulsion adjuvant at 24 and 36 weeks. Controls received Ad5hr-ΔE3 vector or adjuvant only. By ELISPOT analysis, all four SIV gene products elicited potent cellular immune responses that persisted 42 weeks post-initial immunization. Unexpectedly, modulation of this cellular immune response was observed among macaques receiving one, two, or three Ad5hr-SIV recombinants. Env responses were significantly enhanced throughout the immunization period in macaques immunized with Ad5hr-SIV env/rev plus Ad5hr-SIV gag and tended to be higher in macaques that also received Ad5hr-SIV nef. Macaques primed with all three recombinants displayed significant down-modulation in numbers of gamma interferon (IFN-γ)-secreting cells specific for SIV Nef, and the Env- and Gag-specific responses were also diminished. Modulation of antibody responses was not observed. Down-modulation was seen only during the period of Ad5hr-recombinant priming, not during subunit boosting, although SIV-specific IFN-γ-secreting cells persisted. The effect was not attributable to Ad5hr replication differences among immunization groups. Vaccine delivery via replication-competent live vectors, which can persistently infect new cells and continuously present low-level antigen, may be advantageous in overcoming competition among complex immunogens for immune recognition. Effects of current multicomponent vaccines on individual immune responses should be evaluated with regard to future vaccine design
    corecore