155 research outputs found

    Involvement of p59\u3cem\u3efyn\u3c/em\u3e\u3csup\u3eT\u3c/sup\u3e in Interleukin-5 Receptor Signaling

    Get PDF
    Previous studies implicate the nonreceptor protein tyrosine kinase (PTK) p59fyn in the propagation of signals from the B cell antigen receptor. To elucidate the functions of this kinase, we examined B cell responsiveness in mice engineered to lack the hematopoietic isoform of p59fyn. Remarkably, antigen receptor signaling was only modestly defective in fynTnull B cells. In contrast, signaling from the interleukin (IL)-5 receptor which ordinarily provides a comitogenic stimulus with antiimmunoglobulin, was completely blocked. Our results document the importance of p59fynT in IL-5 responses in B cells, and they support a general model for cytokine receptor signal transduction involving the simultaneous recruitment of at least three families of PTK

    Functional ENTPD1 Polymorphisms in African Americans With Diabetes and End-Stage Renal Disease

    Get PDF
    Objective: The vascular ectonucleotidase ENTPD1 protects against renal injury and modulates glucose homeostasis in mouse models. We sought to determine whether human variation in ENTPD1 influences predisposition to diabetes or diabetic nephropathy. Research Design and Methods: We analyzed ENTPD1 single nucleotide polymorphisms (SNPs) in 363 African American control subjects, 380 subjects with type 2 diabetes and end-stage renal disease (DM-ESRD), and 326 subjects with ESRD unrelated to diabetes (non–DM-ESRD). Using human cell lines, we correlated disease-associated ENTPD1 haplotypes with ENTPD1 gene expression. Finally, we studied consequences of ENTPD1 deletion in a mouse model of type 2 diabetes (db/db). Results: A common ENTPD1 two-SNP haplotype was associated with increased risk for DM-ESRD (P = 0.0027), and an uncommon four-SNP haplotype was associated with protection against DM-ESRD (P = 0.004). These haplotypes correlated with ENTPD1 gene expression levels in human cell lines in vitro. Subjects with high ENTPD1-expressing haplotypes were enriched in the DM-ESRD group. By crossing ENTPD1-null mice with db mice, we show that ENTPD1 deletion has prominent effects on metabolic syndrome traits. Specifically, deletion of ENTPD1 lowered glucose levels in control (db/−) mice with one functional leptin receptor and dramatically lowered weights in db/db mice with no functional leptin receptors. Similar effects were seen in aged ENTPD1-null mice with normal leptin receptors. Conclusions: ENTPD1 polymorphisms appear to influence susceptibility to type 2 diabetes and/or diabetic nephropathy in African Americans. Studies in human cell lines and in vivo mouse data support a potential role for ENTPD1 genetic variation in susceptibility to type 2 diabetes

    The STAR Silicon Strip Detector (SSD)

    Full text link
    The STAR Silicon Strip Detector (SSD) completes the three layers of the Silicon Vertex Tracker (SVT) to make an inner tracking system located inside the Time Projection Chamber (TPC). This additional fourth layer provides two dimensional hit position and energy loss measurements for charged particles, improving the extrapolation of TPC tracks through SVT hits. To match the high multiplicity of central Au+Au collisions at RHIC the double sided silicon strip technology was chosen which makes the SSD a half million channels detector. Dedicated electronics have been designed for both readout and control. Also a novel technique of bonding, the Tape Automated Bonding (TAB), was used to fullfill the large number of bounds to be done. All aspects of the SSD are shortly described here and test performances of produced detection modules as well as simulated results on hit reconstruction are given.Comment: 11 pages, 8 figures, 1 tabl

    Multiplicity distribution and spectra of negatively charged hadrons in Au+Au collisions at sqrt(s_nn) = 130 GeV

    Full text link
    The minimum bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant of 38% relative to ppbar collisions at the same energy. The mean transverse momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pt. The pseudorapidity distribution is almost constant within |eta|<1.Comment: 6 pages, 3 figure

    The analysis of 2-amino-2-thiazoline-4-carboxylic acid in the plasma of smokers and non-smokers

    Get PDF
    ATCA (2-amino-2-thiazoline-4-carboxylic acid) is a promising marker to assess cyanide exposure because of several advantages of ATCA analysis over direct determination of cyanide and alternative cyanide biomarkers (i.e. stability in biological matrices, consistent recovery, and relatively small endogenous concentrations). Concentrations of ATCA in the plasma of smoking and non-smoking human volunteers were analyzed using gas-chromatography mass-spectrometry to establish the feasibility of using ATCA as a marker for cyanide exposure. The levels of ATCA in plasma of smoking volunteers, 17.2 ng/ml, were found to be significantly (p < 0.001) higher than that of non-smoking volunteers, 11.8 ng/ml. Comparison of ATCA concentrations of smokers relative to non-smokers in both urine and plasma yielded relatively similar results. The concentration ratio of ATCA for smokers versus non-smokers in plasma and urine was compared to similar literature studies of cyanide and thiocyanate, and correlations are discussed. This study supports previous evidence that ATCA can be used to determine past cyanide exposure and indicates that further studies should be pursued to validate the use of ATCA as a marker of cyanide exposure

    CD39, NTPDase 1, is attached to the plasma membrane by two transmembrane domains. Why?

    Get PDF
    Since the identification of CD39 and other members of the e-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) family as the primary enzymes responsible for cell surface nucleotide hydrolysis, one of their most intriguing features has been their unusual topology. The active site lies in the large extracellular region, but instead of being anchored in the membrane by a single transmembrane domain or lipid link like other ectoenzymes, CD39 has two transmembrane domains, one at each end. In this review we discuss evidence that the structure and dynamics of the transmembrane helices are intricately connected to enzymatic function. Removal of either or both transmembrane domains or disruption of their native state by detergent solubilization reduces activity by 90%, indicating that native function requires both transmembrane domains to be present and in the membrane. Enzymatic and mutational analysis of the native and truncated forms has shown that the active site can exist in distinct functional states characterized by different total activities, substrate specificities, hydrolysis mechanisms, and intermediate ADP release during ATP hydrolysis, depending on the state of the transmembrane domains. Disulfide crosslinking of cysteines introduced within the transmembrane helices revealed that they interact within and between molecules, in particular near the extracellular domain, and that activity depends on their organization. Both helices exhibit a high degree of rotational mobility, and the ability to undergo dynamic motions is required for activity and regulated by substrate binding. Recent reports suggest that membrane composition can regulate NTPDase activity. We propose that mechanical bilayer properties, potentially elasticity, might regulate CD39 by altering the balance between stability and mobility of its transmembrane domains

    Cloning and characterization of the ecto-nucleotidase NTPDase3 from rat brain: Predicted secondary structure and relation to other members of the E-NTPDase family and actin

    Get PDF
    The protein family of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDase family) contains multiple members that hydrolyze nucleoside 5’-triphosphates and nucleoside 5’-diphosphates with varying preference for the individual type of nucleotide. We report the cloning and functional expression of rat NTPDase3. The rat brain-derived cDNA has an open reading frame of 1590 bp encoding 529 amino acid residues, a calculated molecular mass of 59.1 kDa and predicted N- and C-terminal hydrophobic sequences. It shares 94.3% and 81.7% amino acid identity with the mouse and human NTPDase3, respectively, and is more closely related to cell surface-located than to the intracellularly located members of the enzyme family. The NTPDase3 gene is allocated to chromosome 8q32 and organized into 11 exons. Rat NTPDase3 expressed in CHO cells hydrolyzed both nucleoside triphosphates and nucleoside diphosphates with hydrolysis ratios of ATP:ADP of 5:1 and UTP:UDP of 8:1. After addition of ATP, ADP is formed as an intermediate product that is further hydrolyzed to AMP. The enzyme is preferentially activated by Ca2+ over Mg2+ and reveals an alkaline pH optimum. Immunocytochemistry confirmed expression of heterologously expressed NTPDase3 to the surface of CHO cells. PC12 cells express endogenous surface-located NTPDase3. An immunoblot analysis detects NTPDase3 in all rat brain regions investigated. An alignment of the secondary structure domains of actin conserved within the actin/HSP70/sugar kinase superfamily to those of all members of the NTPDase family reveals apparent similarity. It infers that NTPDases share the two-domain structure with members of this enzyme superfamily

    SPATIOTEMPORAL TRENDS OF CASES OF PANDEMIC INFLUENZA A(H1N1)PDM09 IN ARGENTINA, 2009-2012

    Get PDF
    The aim of this paper was to analyze the spatiotemporal variations of cases of influenza A(H1N1)pdm09 in Argentina. A space-time permutation scan statistic was performed to test the non-randomness in the interaction between space and time in reported influenza A(H1N1)pdm09 cases. In 2009, two clusters were recorded in the east of Buenos Aires Province (May and June) and in the central and northern part of Argentina (July and August). Between 2011 and 2012, clusters near areas bordering other countries were registered. Within the clusters, in 2009, the high notification rates were first observed in the school-age population and then extended to the older population (15-59 years). From 2011 onwards, higher rates of reported cases of influenza A(H1N1)pdm09 occurred in children under five years in center of the country. Two stages of transmission of influenza A(H1N1)pdm09 can be characterized. The first stage had high rates of notification and a possible interaction with individuals from other countries in the major cities of Argentina (pattern of hierarchy), and the second stage had an increased interaction in some border areas without a clear pattern of hierarchy. These results suggest the need for greater coordination in the Southern Cone countries, in order to implement joint prevention and vaccination policies
    corecore