13 research outputs found
Oral Delivery of DMAB-Modified Docetaxel-Loaded PLGA-TPGS Nanoparticles for Cancer Chemotherapy
Three types of nanoparticle formulation from biodegradable PLGA-TPGS random copolymer were developed in this research for oral administration of anticancer drugs, which include DMAB-modified PLGA nanoparticles, unmodified PLGA-TPGS nanoparticles and DMAB-modified PLGA-TPGS nanoparticles. Firstly, the PLGA-TPGS random copolymer was synthesized and characterized. DMAB was used to increase retention time at the cell surface, thus increasing the chances of particle uptake and improving oral drug bioavailability. Nanoparticles were found to be of spherical shape with an average particle diameter of around 250 nm. The surface charge of PLGA-TPGS nanoparticles was changed to positive after DMAB modification. The results also showed that the DMAB-modified PLGA-TPGS nanoparticles have significantly higher level of the cellular uptake than that of DMAB-modified PLGA nanoparticles and unmodified PLGA-TPGS nanoparticles. In vitro, cytotoxicity experiment showed advantages of the DMAB-modified PLGA-TPGS nanoparticle formulation over commercial Taxotere® in terms of cytotoxicity against MCF-7 cells. In conclusion, oral chemotherapy by DMAB-modified PLGA-TPGS nanoparticle formulation is an attractive and promising treatment option for patients
Inhibition of OATP1B1 by tyrosine kinase inhibitors: in vitro–in vivo correlations
BACKGROUND: Several tyrosine kinase inhibitors (TKIs) can decrease docetaxel clearance in patients by an unknown mechanism. We hypothesised that these interactions are mediated by the hepatic uptake transporter OATP1B1. METHODS: The influence of 16 approved TKIs on transport was studied in vitro using HEK293 cells expressing OATP1B1 or its mouse equivalent Oatp1b2. Pharmacokinetic studies were performed with Oatp1b2-knockout and OATP1B1-transgenic mice. RESULTS: All docetaxel-interacting TKIs, including sorafenib, were identified as potent inhibitors of OATP1B1 in vitro. Although Oatp1b2 deficiency in vivo was associated with increased docetaxel exposure, single- or multiple-dose sorafenib did not influence docetaxel pharmacokinetics. CONCLUSION: These findings highlight the importance of identifying proper preclinical models for verifying and predicting TKI–chemotherapy interactions involving transporters