2,241 research outputs found
AgRISTARS: Foreign commodity production forecasting. The 1980 US corn and soybeans exploratory experiment
The U.S. corn and soybeans exploratory experiment is described which consisted of evaluations of two technology components of a production forecasting system: classification procedures (crop labeling and proportion estimation at the level of a sampling unit) and sampling and aggregation procedures. The results from the labeling evaluations indicate that the corn and soybeans labeling procedure works very well in the U.S. corn belt with full season (after tasseling) LANDSAT data. The procedure should be readily adaptable to corn and soybeans labeling required for subsequent exploratory experiments or pilot tests. The machine classification procedures evaluated in this experiment were not effective in improving the proportion estimates. The corn proportions produced by the machine procedures had a large bias when the bias correction was not performed. This bias was caused by the manner in which the machine procedures handled spectrally impure pixels. The simulation test indicated that the weighted aggregation procedure performed quite well. Although further work can be done to improve both the simulation tests and the aggregation procedure, the results of this test show that the procedure should serve as a useful baseline procedure in future exploratory experiments and pilot tests
High Resolution Imaging Systems For Spin-Stabilized Probe Spacecraft
A novel design for a high-resolution imaging system which includes on-board data editing and optical navigation, suggests high quality images can be acquired from spin-stabilized spacecraft oriented towards high velocity, short duration planetary missions ("Probes"). The approach to designing imaging systems requires that mission objectives be met within the physical and fiscal constraints imposed by the spacecraft and mission design. Severe constraints imposed on a Comet Halley probe (for example, 57km/sec encounter velocity with a small, 10km diameter, object coupled with a great uncertainty in encounter time and distance, were overcome by innovative use of existing technology. Such designs suggest that 3-axis stabilization or non-spinning platforms are not necessary to acquire high resolution, high quality planetary images
The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae
Exposure of intertidal macroalgae during low tide has been linked to the emission of a variety of atmospherically-important trace gases into the coastal atmosphere. In recent years, several studies have investigated the role of inorganic iodine and organoiodides as antioxidants and their emission during exposure to combat oxidative stress, yet the role of organic bromine species during desiccation is less well understood. In this study the emission of dibromomethane (CH2Br2) and bromoform (CHBr3) during exposure and desiccation of two common temperate macroalgae, Fucus vesiculosus and Ulva intestinalis, is reported. Determination of the impact exposure may have on algal physiological processes is difficult as intertidal species are adapted to desiccation and may undergo varying degrees of desiccation before their physiology is affected. For this reason we include comparisons between photosynthetic capacity (Fv/Fm) and halocarbon emissions during a desiccation time series. In addition, the role of rewetting with freshwater to simulate exposure to rain was also investigated. Our results show that an immediate flux of bromocarbons occurs upon exposure, followed by a decline in bromocarbon emissions. We suggest that this immediate bromocarbon pulse may be linked to volatilisation or emissions of existing bromocarbon stores from the algal surface rather than the production of bromocarbons as an antioxidant response
Strong links between phytoplankton community physiology and dimethylsulphoniopropionate (DMSP) concentrations in the sub-tropical/tropical Atlantic
We present an extensive dataset of dimethylsulphide (DMS, n = 651) and dimethylsulphoniopropionate (DMSP, n = 590) from the Atlantic Meridional Transect programme. These data are used to derive representative depth profiles that illustrate observed natural variations and can be used for DMS and DMSP model-validation in oligotrophic waters. To further understand our dataset, we interpret the data with a wide range of accompanying parameters that characterise the prevailing biogeochemical conditions and phytoplankton community physiology, activity, taxonomic composition, and capacity to cope with light stress. No correlations were observed with typical biomarker pigments for DMSP-producing species. However, strong correlations were found between DMSP and primary production by cells >2 µm in diameter, and between DMSP and some photo-protective pigments. These parameters are measures of mixed phytoplankton communities, so we infer that such associations are likely to be stronger in DMSP-producing organisms. Further work is warranted to develop links between community parameters, DMS and DMSP at the global scale
Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images
The quality of modern astronomical data, the power of modern computers and
the agility of current image-processing software enable the creation of
high-quality images in a purely digital form. The combination of these
technological advancements has created a new ability to make color astronomical
images. And in many ways it has led to a new philosophy towards how to create
them. A practical guide is presented on how to generate astronomical images
from research data with powerful image-processing programs. These programs use
a layering metaphor that allows for an unlimited number of astronomical
datasets to be combined in any desired color scheme, creating an immense
parameter space to be explored using an iterative approach. Several examples of
image creation are presented.
A philosophy is also presented on how to use color and composition to create
images that simultaneously highlight scientific detail and are aesthetically
appealing. This philosophy is necessary because most datasets do not correspond
to the wavelength range of sensitivity of the human eye. The use of visual
grammar, defined as the elements which affect the interpretation of an image,
can maximize the richness and detail in an image while maintaining scientific
accuracy. By properly using visual grammar, one can imply qualities that a
two-dimensional image intrinsically cannot show, such as depth, motion and
energy. In addition, composition can be used to engage viewers and keep them
interested for a longer period of time. The use of these techniques can result
in a striking image that will effectively convey the science within the image,
to scientists and to the public.Comment: 104 pages, 38 figures, submitted to A
Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism
We measured membrane permeability, hydrolytic enzyme, and caspase-like activities using fluorescent cell stains to document changes caused by nutrient exhaustion in the coccolithophore Emiliania huxleyi and the diatom Thalassiosira pseudonana, during batch-culture nutrient limitation. We related these changes to cell death, pigment alteration, and concentrations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) to assess the transformation of these compounds as cell physiological condition changes. E. huxleyi persisted for 1 month in stationary phase; in contrast, T. pseudonana cells rapidly declined within 10 d of nutrient depletion. T. pseudonana progressively lost membrane integrity and the ability to metabolize 5-chloromethylfluorescein diacetate (CMFDA; hydrolytic activity), whereas E. huxleyi developed two distinct CMFDA populations and retained membrane integrity (SYTOX Green). Caspase-like activity appeared higher in E. huxleyi than in T. pseudonana during the post-growth phase, despite a lack of apparent mortality and cell lysis. Photosynthetic pigment degradation and transformation occurred in both species after growth; chlorophyll a (Chl a) degradation was characterized by an increase in the ratio of methoxy Chl a : Chl a in T. pseudonana but not in E. huxleyi, and the increase in this ratio preceded loss of membrane integrity. Total DMSP declined in T. pseudonana during cell death and DMS increased. In contrast, and in the absence of cell death, total DMSP and DMS increased in E. huxleyi. Our data show a novel chlorophyll alteration product associated with T. pseudonana death, suggesting a promising approach to discriminate nonviable cells in nature
Report of the Terrestrial Bodies Science Working Group. Volume 3: Venus
The science objectives of Pioneer Venus and future investigations of the planet are discussed. Concepts and payloads for proposed missions and the supporting research and technology required to obtain the desired measurements from space and Earth-based observations are examined, as well as mission priorities and schedules
Recommended from our members
Progress on Securing Nuclear Weapons and Materials: The Four-Year Effort and Beyond
On the eve of the Nuclear Security Summit in Seoul, South Korea, a new study finds that an international initiative to secure all vulnerable nuclear stockpiles within four years has reduced the dangers they pose. But the new analysis, by researchers in Harvard University’s Project on Managing the Atom, also concludes that much will remain to be done to ensure that all nuclear weapons and material are secure when the current four-year effort comes to an end. “At the end of four years, the global risks of nuclear theft will be significantly lower than they were before,” said co-author Matthew Bunn, associate professor of public policy at Harvard Kennedy School. “But there will still be a great deal left to do to make sure that all the world’s stocks of nuclear weapons and the materials needed to make them are protected from the full range of plausible terrorist and criminal threats – in a way that will last.” The other co-authors of the report are Martin B. Malin, executive director of the Project on Managing the Atom in the Kennedy School’s Belfer Center for Science and International Affairs, and Eben Harrell, research associate in the Managing the Atom project. The study, “Progress on Securing Nuclear Weapons and Materials: the Four-Year Effort and Beyond,” was released in advance of the Seoul summit on March 26-27, 2012, being attended by leaders or senior officials from 54 countries and four international organizations
Field Guide for Designing Human Interaction with Intelligent Systems
The characteristics of this Field Guide approach address the problems of designing innovative software to support user tasks. The requirements for novel software are difficult to specify a priori, because there is not sufficient understanding of how the users' tasks should be supported, and there are not obvious pre-existing design solutions. When the design team is in unfamiliar territory, care must be taken to avoid rushing into detailed design, requirements specification, or implementation of the wrong product. The challenge is to get the right design and requirements in an efficient, cost-effective manner. This document's purpose is to describe the methods we are using to design human interactions with intelligent systems which support Space Shuttle flight controllers in the Mission Control Center at NASA/Johnson Space Center. Although these software systems usually have some intelligent features, the design challenges arise primarily from the innovation needed in the software design. While these methods are tailored to our specific context, they should be extensible, and helpful to designers of human interaction with other types of automated systems. We review the unique features of this context so that you can determine how to apply these methods to your project Throughout this Field Guide, goals of the design methods are discussed. This should help designers understand how a specific method might need to be adapted to the project at hand
The Mars observer camera
A camera designed to operate under the extreme constraints of the Mars Observer Mission was selected by NASA in April, 1986. Contingent upon final confirmation in mid-November, the Mars Observer Camera (MOC) will begin acquiring images of the surface and atmosphere of Mars in September-October 1991. The MOC incorporates both a wide angle system for low resolution global monitoring and intermediate resolution regional targeting, and a narrow angle system for high resolution selective surveys. Camera electronics provide control of image clocking and on-board, internal editing and buffering to match whatever spacecraft data system capabilities are allocated to the experiment. The objectives of the MOC experiment follow
- …