14,911 research outputs found

    Gauge Transformations, BRST Cohomology and Wigner's Little Group

    Full text link
    We discuss the (dual-)gauge transformations and BRST cohomology for the two (1 + 1)-dimensional (2D) free Abelian one-form and four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theories by exploiting the (co-)BRST symmetries (and their corresponding generators) for the Lagrangian densities of these theories. For the 4D free 2-form gauge theory, we show that the changes on the antisymmetric polarization tensor e^{\mu\nu} (k) due to (i) the (dual-)gauge transformations corresponding to the internal symmetry group, and (ii) the translation subgroup T(2) of the Wigner's little group, are connected with each-other for the specific relationships among the parameters of these transformation groups. In the language of BRST cohomology defined w.r.t. the conserved and nilpotent (co-)BRST charges, the (dual-)gauge transformed states turn out to be the sum of the original state and the (co-)BRST exact states. We comment on (i) the quasi-topological nature of the 4D free 2-form gauge theory from the degrees of freedom count on e^{\mu\nu} (k), and (ii) the Wigner's little group and the BRST cohomology for the 2D one-form gauge theory {\it vis-{\`a}-vis} our analysis for the 4D 2-form gauge theory.Comment: LaTeX file, 29 pages, misprints in (3.7), (3.8), (3.9), (3.13) and (4.14)corrected and communicated to IJMPA as ``Erratum'

    Geometrical Aspects Of BRST Cohomology In Augmented Superfield Formalism

    Full text link
    In the framework of augmented superfield approach, we provide the geometrical origin and interpretation for the nilpotent (anti-)BRST charges, (anti-)co-BRST charges and a non-nilpotent bosonic charge. Together, these local and conserved charges turn out to be responsible for a clear and cogent definition of the Hodge decomposition theorem in the quantum Hilbert space of states. The above charges owe their origin to the de Rham cohomological operators of differential geometry which are found to be at the heart of some of the key concepts associated with the interacting gauge theories. For our present review, we choose the two (1+1)(1 + 1)-dimensional (2D) quantum electrodynamics (QED) as a prototype field theoretical model to derive all the nilpotent symmetries for all the fields present in this interacting gauge theory in the framework of augmented superfield formulation and show that this theory is a {\it unique} example of an interacting gauge theory which provides a tractable field theoretical model for the Hodge theory.Comment: LaTeX file, 25 pages, Ref. [49] updated, correct page numbers of the Journal are give

    Superfield Approach to (Non-)local Symmetries for One-Form Abelian Gauge Theory

    Full text link
    We exploit the geometrical superfield formalism to derive the local, covariant and continuous Becchi-Rouet-Stora-Tyutin (BRST) symmetry transformations and the non-local, non-covariant and continuous dual-BRST symmetry transformations for the free Abelian one-form gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Our discussion is carried out in the framework of BRST invariant Lagrangian density for the above 4D theory in the Feynman gauge. The geometrical origin and interpretation for the (dual-)BRST charges (and the transformations they generate) are provided in the language of translations of some superfields along the Grassmannian directions of the six (4+2) 4 + 2)-dimensional supermanifold parametrized by the four spacetime and two Grassmannian variables.Comment: LaTeX file, 23 page

    Nilpotent Symmetries For Matter Fields In Non-Abelian Gauge Theory: Augmented Superfield Formalism

    Full text link
    In the framework of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism, the derivation of the (anti-)BRST nilpotent symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem. In our present investigation, the local, covariant, continuous and off-shell nilpotent (anti-)BRST symmetry transformations for the Dirac fields (ψ,ψˉ)(\psi, \bar\psi) are derived in the framework of the augmented superfield formulation where the four (3+1)(3 + 1)-dimensional (4D) interacting non-Abelian gauge theory is considered on the six (4+2)(4 + 2)-dimensional supermanifold parametrized by the four even spacetime coordinates xμx^\mu and a couple of odd elements (θ\theta and θˉ\bar\theta) of the Grassmann algebra. The requirement of the invariance of the matter (super)currents and the horizontality condition on the (super)manifolds leads to the derivation of the nilpotent symmetries for the matter fields as well as the gauge- and the (anti-)ghost fields of the theory in the general scheme of the augmented superfield formalism.Comment: LaTeX file, 16 pages, printing mistakes in the second paragraph of `Introduction' corrected, a footnote added, these modifications submitted as ``erratum'' to IJMPA in the final for

    Abelian 3-form gauge theory: superfield approach

    Full text link
    We discuss a D-dimensional Abelian 3-form gauge theory within the framework of Bonora-Tonin's superfield formalism and derive the off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for this theory. To pay our homage to Victor I. Ogievetsky (1928-1996), who was one of the inventors of Abelian 2-form (antisymmetric tensor) gauge field, we go a step further and discuss the above D-dimensional Abelian 3-form gauge theory within the framework of BRST formalism and establish that the existence of the (anti-)BRST invariant Curci-Ferrari (CF) type of restrictions is the hallmark of any arbitrary p-form gauge theory (discussed within the framework of BRST formalism).Comment: LaTeX file, 8 pages, Talk delivered at BLTP, JINR, Dubna, Moscow Region, Russi

    Hodge Duality Operation And Its Physical Applications On Supermanifolds

    Full text link
    An appropriate definition of the Hodge duality ⋆\star operation on any arbitrary dimensional supermanifold has been a long-standing problem. We define a working rule for the Hodge duality ⋆\star operation on the (2+2)(2 + 2)-dimensional supermanifold parametrized by a couple of even (bosonic) spacetime variables xμ(μ=0,1)x^\mu (\mu = 0, 1) and a couple of Grassmannian (odd) variables θ\theta and θˉ\bar\theta of the Grassmann algebra. The Minkowski spacetime manifold, hidden in the supermanifold and parametrized by xμ(μ=0,1)x^\mu (\mu = 0, 1), is chosen to be a flat manifold on which a two (1+1)(1 + 1)-dimensional (2D) free Abelian gauge theory, taken as a prototype field theoretical model, is defined. We demonstrate the applications of the above definition (and its further generalization) for the discussion of the (anti-)co-BRST symmetries that exist for the field theoretical models of 2D- (and 4D) free Abelian gauge theories considered on the four (2+2)(2 + 2)- (and six (4+2)(4 + 2))-dimensional supermanifolds, respectively.Comment: LaTeX file, 25 pages, Journal-versio

    Noncommutativity In The Mechanics Of A Free Massless Relativistic Particle

    Full text link
    We show the existence of a noncommutative spacetime structure in the context of a complete discussion on the underlying spacetime symmetries for the physical system of a free massless relativistic particle. The above spacetime symmetry transformations are discussed for the first-order Lagrangian of the system where the transformations on the coordinates, velocities and momenta play very important roles. We discuss the dynamics of this system in a systematic manner by exploiting the symplectic structures associated with the four dimensional (non-)commutative cotangent (i.e. momentum phase) space corresponding to a two dimensional (non-)commutative configuration (i.e. target) space. A simple connection of the above noncommutativity (NC) is established with the NC associated with the subject of quantum groups where SLq,q−1(2)SL_{q,q^{-1}} (2) transformations play a decisive role.Comment: LaTeX file, 19 page
    • …
    corecore