13,098 research outputs found

    Nilpotent Symmetries For Matter Fields In Non-Abelian Gauge Theory: Augmented Superfield Formalism

    Full text link
    In the framework of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism, the derivation of the (anti-)BRST nilpotent symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem. In our present investigation, the local, covariant, continuous and off-shell nilpotent (anti-)BRST symmetry transformations for the Dirac fields (ψ,ψˉ)(\psi, \bar\psi) are derived in the framework of the augmented superfield formulation where the four (3+1)(3 + 1)-dimensional (4D) interacting non-Abelian gauge theory is considered on the six (4+2)(4 + 2)-dimensional supermanifold parametrized by the four even spacetime coordinates xμx^\mu and a couple of odd elements (θ\theta and θˉ\bar\theta) of the Grassmann algebra. The requirement of the invariance of the matter (super)currents and the horizontality condition on the (super)manifolds leads to the derivation of the nilpotent symmetries for the matter fields as well as the gauge- and the (anti-)ghost fields of the theory in the general scheme of the augmented superfield formalism.Comment: LaTeX file, 16 pages, printing mistakes in the second paragraph of `Introduction' corrected, a footnote added, these modifications submitted as ``erratum'' to IJMPA in the final for

    Evaluation of social personalized adaptive E-Learning environments : end-user point of view

    Get PDF
    The use of adaptations, along with the social affordances of collaboration and networking, carries a great potential for improving e-learning experiences. However, the review of the previous work indicates current e-learning systems have only marginally explored the integration of social features and adaptation techniques. The overall aim of this research, therefore, is to address this gap by evaluating a system developed to foster social personalized adaptive e-learning experiences. We have developed our first prototype system, Topolor, based on the concepts of Adaptive Educational Hypermedia and Social E-Learning. We have also conducted an experimental case study for the evaluation of the prototype system from different perspectives. The results show a considerably high satisfaction of the end users. This paper reports the evaluation results from end user point of view, and generalizes our method to a component-based evaluation framework

    Cohomological aspects of Abelian gauge theory

    Full text link
    We discuss some aspects of cohomological properties of a two-dimensional free Abelian gauge theory in the framework of BRST formalism. We derive the conserved and nilpotent BRST- and co-BRST charges and express the Hodge decomposition theorem in terms of these charges and a conserved bosonic charge corresponding to the Laplacian operator. It is because of the topological nature of free U(1) gauge theory that the Laplacian operator goes to zero when equations of motion are exploited. We derive two sets of topological invariants which are related to each-other by a certain kind of duality transformation and express the Lagrangian density of this theory as the sum of terms that are BRST- and co-BRST invariants. Mathematically, this theory captures together some of the key features of Witten- and Schwarz type of topological field theories.Comment: 12 pages, LaTeX, no figures, Title and text have been slightly changed, Journal reference is given and a reference has been adde

    Wigner's little group and BRST cohomology for one-form Abelian gauge theory

    Full text link
    We discuss the (dual-)gauge transformations for the gauge-fixed Lagrangian density and establish their intimate connection with the translation subgroup T(2) of the Wigner's little group for the free one-form Abelian gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Though the relationship between the usual gauge transformation for the Abelian massless gauge field and T(2) subgroup of the little group is quite well-known, such a connection between the dual-gauge transformation and the little group is a new observation. The above connections are further elaborated and demonstrated in the framework of Becchi-Rouet-Stora-Tyutin (BRST) cohomology defined in the quantum Hilbert space of states where the Hodge decomposition theorem (HDT) plays a very decisive role.Comment: LaTeX file, 17 pages, Journal-ref. give

    Large-scale structure and the redshift-distance relation

    Get PDF
    In efforts to demonstrate the linear Hubble law v = Hr from galaxy observations, the underlying simplicity is often obscured by complexities arising from magnitude-limited data. In this paper we point out a simple but previously unremarked fact: that the shapes and orientations of structures in redshift space contain in themselves independent information about the cosmological redshift-distance relation. The orientations of voids in the CfA slice support the Hubble law, giving a redshift-distance power index p = 0.83 +/- 0.36 (void data from Slezak, de Lapparent, & Bijoui 1993) or p = 0.99 +/- 0.38 (void data from Malik & Subramanian 1997).Comment: 11 pages (AASTeX), 4 figures, to appear in the Astrophysical Journal Letter

    Gauge Transformations, BRST Cohomology and Wigner's Little Group

    Full text link
    We discuss the (dual-)gauge transformations and BRST cohomology for the two (1 + 1)-dimensional (2D) free Abelian one-form and four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theories by exploiting the (co-)BRST symmetries (and their corresponding generators) for the Lagrangian densities of these theories. For the 4D free 2-form gauge theory, we show that the changes on the antisymmetric polarization tensor e^{\mu\nu} (k) due to (i) the (dual-)gauge transformations corresponding to the internal symmetry group, and (ii) the translation subgroup T(2) of the Wigner's little group, are connected with each-other for the specific relationships among the parameters of these transformation groups. In the language of BRST cohomology defined w.r.t. the conserved and nilpotent (co-)BRST charges, the (dual-)gauge transformed states turn out to be the sum of the original state and the (co-)BRST exact states. We comment on (i) the quasi-topological nature of the 4D free 2-form gauge theory from the degrees of freedom count on e^{\mu\nu} (k), and (ii) the Wigner's little group and the BRST cohomology for the 2D one-form gauge theory {\it vis-{\`a}-vis} our analysis for the 4D 2-form gauge theory.Comment: LaTeX file, 29 pages, misprints in (3.7), (3.8), (3.9), (3.13) and (4.14)corrected and communicated to IJMPA as ``Erratum'

    Superfield Approach to (Non-)local Symmetries for One-Form Abelian Gauge Theory

    Full text link
    We exploit the geometrical superfield formalism to derive the local, covariant and continuous Becchi-Rouet-Stora-Tyutin (BRST) symmetry transformations and the non-local, non-covariant and continuous dual-BRST symmetry transformations for the free Abelian one-form gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Our discussion is carried out in the framework of BRST invariant Lagrangian density for the above 4D theory in the Feynman gauge. The geometrical origin and interpretation for the (dual-)BRST charges (and the transformations they generate) are provided in the language of translations of some superfields along the Grassmannian directions of the six (4+2) 4 + 2)-dimensional supermanifold parametrized by the four spacetime and two Grassmannian variables.Comment: LaTeX file, 23 page

    Hodge Duality Operation And Its Physical Applications On Supermanifolds

    Full text link
    An appropriate definition of the Hodge duality \star operation on any arbitrary dimensional supermanifold has been a long-standing problem. We define a working rule for the Hodge duality \star operation on the (2+2)(2 + 2)-dimensional supermanifold parametrized by a couple of even (bosonic) spacetime variables xμ(μ=0,1)x^\mu (\mu = 0, 1) and a couple of Grassmannian (odd) variables θ\theta and θˉ\bar\theta of the Grassmann algebra. The Minkowski spacetime manifold, hidden in the supermanifold and parametrized by xμ(μ=0,1)x^\mu (\mu = 0, 1), is chosen to be a flat manifold on which a two (1+1)(1 + 1)-dimensional (2D) free Abelian gauge theory, taken as a prototype field theoretical model, is defined. We demonstrate the applications of the above definition (and its further generalization) for the discussion of the (anti-)co-BRST symmetries that exist for the field theoretical models of 2D- (and 4D) free Abelian gauge theories considered on the four (2+2)(2 + 2)- (and six (4+2)(4 + 2))-dimensional supermanifolds, respectively.Comment: LaTeX file, 25 pages, Journal-versio

    A simplified structure for the second order cosmological perturbation equations

    Full text link
    Increasingly accurate observations of the cosmic microwave background and the large scale distribution of galaxies necessitate the study of nonlinear perturbations of Friedmann-Lemaitre cosmologies, whose equations are notoriously complicated. In this paper we present a new derivation of the governing equations for second order perturbations within the framework of the metric-based approach that is minimal, as regards amount of calculation and length of expressions, and flexible, as regards choice of gauge and stress-energy tensor. Because of their generality and the simplicity of their structure our equations provide a convenient starting point for determining the behaviour of nonlinear perturbations of FL cosmologies with any given stress-energy content, using either the Poisson gauge or the uniform curvature gauge.Comment: 30 pages, no figures. Changed title to the one in published version and some minor changes and addition
    corecore