16,388 research outputs found

    Wigner's little group and BRST cohomology for one-form Abelian gauge theory

    Full text link
    We discuss the (dual-)gauge transformations for the gauge-fixed Lagrangian density and establish their intimate connection with the translation subgroup T(2) of the Wigner's little group for the free one-form Abelian gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Though the relationship between the usual gauge transformation for the Abelian massless gauge field and T(2) subgroup of the little group is quite well-known, such a connection between the dual-gauge transformation and the little group is a new observation. The above connections are further elaborated and demonstrated in the framework of Becchi-Rouet-Stora-Tyutin (BRST) cohomology defined in the quantum Hilbert space of states where the Hodge decomposition theorem (HDT) plays a very decisive role.Comment: LaTeX file, 17 pages, Journal-ref. give

    Gauge Transformations, BRST Cohomology and Wigner's Little Group

    Full text link
    We discuss the (dual-)gauge transformations and BRST cohomology for the two (1 + 1)-dimensional (2D) free Abelian one-form and four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theories by exploiting the (co-)BRST symmetries (and their corresponding generators) for the Lagrangian densities of these theories. For the 4D free 2-form gauge theory, we show that the changes on the antisymmetric polarization tensor e^{\mu\nu} (k) due to (i) the (dual-)gauge transformations corresponding to the internal symmetry group, and (ii) the translation subgroup T(2) of the Wigner's little group, are connected with each-other for the specific relationships among the parameters of these transformation groups. In the language of BRST cohomology defined w.r.t. the conserved and nilpotent (co-)BRST charges, the (dual-)gauge transformed states turn out to be the sum of the original state and the (co-)BRST exact states. We comment on (i) the quasi-topological nature of the 4D free 2-form gauge theory from the degrees of freedom count on e^{\mu\nu} (k), and (ii) the Wigner's little group and the BRST cohomology for the 2D one-form gauge theory {\it vis-{\`a}-vis} our analysis for the 4D 2-form gauge theory.Comment: LaTeX file, 29 pages, misprints in (3.7), (3.8), (3.9), (3.13) and (4.14)corrected and communicated to IJMPA as ``Erratum'

    Nilpotent Symmetries For Matter Fields In Non-Abelian Gauge Theory: Augmented Superfield Formalism

    Full text link
    In the framework of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism, the derivation of the (anti-)BRST nilpotent symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem. In our present investigation, the local, covariant, continuous and off-shell nilpotent (anti-)BRST symmetry transformations for the Dirac fields (ψ,ψˉ)(\psi, \bar\psi) are derived in the framework of the augmented superfield formulation where the four (3+1)(3 + 1)-dimensional (4D) interacting non-Abelian gauge theory is considered on the six (4+2)(4 + 2)-dimensional supermanifold parametrized by the four even spacetime coordinates xμx^\mu and a couple of odd elements (θ\theta and θˉ\bar\theta) of the Grassmann algebra. The requirement of the invariance of the matter (super)currents and the horizontality condition on the (super)manifolds leads to the derivation of the nilpotent symmetries for the matter fields as well as the gauge- and the (anti-)ghost fields of the theory in the general scheme of the augmented superfield formalism.Comment: LaTeX file, 16 pages, printing mistakes in the second paragraph of `Introduction' corrected, a footnote added, these modifications submitted as ``erratum'' to IJMPA in the final for

    Superfield approach to symmetry invariance in QED with complex scalar fields

    Full text link
    We show that the Grassmannian independence of the super Lagrangian density, expressed in terms of the superfields defined on a (4, 2)-dimensional supermanifold, is a clear-cut proof for the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST invariance of the corresoponding four (3 + 1)-dimensional (4D) Lagrangian density that describes the interaction between the U(1) gauge field and the charged complex scalar fields. The above 4D field theoretical model is considered on a (4, 2)-dimensional supermanifold parametrized by the ordinary four spacetime variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of Grassmannian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta \bar\theta + \bar\theta \theta = 0). Geometrically, the (anti-)BRST invariance is encoded in the translation of the super Lagrangian density along the Grassmannian directions of the above supermanifold such that the outcome of this shift operation is zero.Comment: LaTeX file, 14 pages, minor changes in the title and text, version to appear in ``Pramana - Journal of Physics'

    Superfield Approach to (Non-)local Symmetries for One-Form Abelian Gauge Theory

    Full text link
    We exploit the geometrical superfield formalism to derive the local, covariant and continuous Becchi-Rouet-Stora-Tyutin (BRST) symmetry transformations and the non-local, non-covariant and continuous dual-BRST symmetry transformations for the free Abelian one-form gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Our discussion is carried out in the framework of BRST invariant Lagrangian density for the above 4D theory in the Feynman gauge. The geometrical origin and interpretation for the (dual-)BRST charges (and the transformations they generate) are provided in the language of translations of some superfields along the Grassmannian directions of the six (4+2) 4 + 2)-dimensional supermanifold parametrized by the four spacetime and two Grassmannian variables.Comment: LaTeX file, 23 page

    Constraints on the three-fluid model of curvaton decay

    Full text link
    A three fluid system describing the decay of the curvaton is studied by numerical and analytical means. We place constraints on the allowed interaction strengths between the fluids and initial curvaton density by requiring that the curvaton decays before nucleosynthesis while nucleosynthesis, radiation-matter equality and decoupling occur at correct temperatures. We find that with a continuous, time-independent interaction, a small initial curvaton density is naturally preferred along with a low reheating temperature. Allowing for a time-dependent interaction, this constraint can be relaxed. In both cases, a purely adiabatic final state can be generated, but not without fine-tuning. Unlike in the two fluid system, the time-dependent interactions are found to have a small effect on the curvature perturbation itself due to the different nature of the system. The presence of non-gaussianity in the model is discussed.Comment: 9 pages, 10 figure

    Cohomological aspects of Abelian gauge theory

    Full text link
    We discuss some aspects of cohomological properties of a two-dimensional free Abelian gauge theory in the framework of BRST formalism. We derive the conserved and nilpotent BRST- and co-BRST charges and express the Hodge decomposition theorem in terms of these charges and a conserved bosonic charge corresponding to the Laplacian operator. It is because of the topological nature of free U(1) gauge theory that the Laplacian operator goes to zero when equations of motion are exploited. We derive two sets of topological invariants which are related to each-other by a certain kind of duality transformation and express the Lagrangian density of this theory as the sum of terms that are BRST- and co-BRST invariants. Mathematically, this theory captures together some of the key features of Witten- and Schwarz type of topological field theories.Comment: 12 pages, LaTeX, no figures, Title and text have been slightly changed, Journal reference is given and a reference has been adde
    corecore