22,659 research outputs found

    A Concise Introduction to Perturbation Theory in Cosmology

    Full text link
    We give a concise, self-contained introduction to perturbation theory in cosmology at linear and second order, striking a balance between mathematical rigour and usability. In particular we discuss gauge issues and the active and passive approach to calculating gauge transformations. We also construct gauge-invariant variables, including the second order tensor perturbation on uniform curvature hypersurfaces.Comment: revtex4, 16 pages, 3 figures; v2: minor changes, typos corrected, reference added, version accepted by CQ

    Augmented Superfield Approach To Unique Nilpotent Symmetries For Complex Scalar Fields In QED

    Full text link
    The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)- and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to the U(1) gauge field, in the framework of augmented superfield formalism. This interacting gauge theory (i.e. QED) is considered on a six (4, 2)-dimensional supermanifold parametrized by four even spacetime coordinates and a couple of odd elements of the Grassmann algebra. In addition to the horizontality condition (that is responsible for the derivation of the exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a new restriction on the supermanifold, owing its origin to the (super) covariant derivatives, has been invoked for the derivation of the exact nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above nilpotent symmetries are discussed, too.Comment: LaTeX file, 17 pages, journal versio

    Heat capacity and magnetoresistance in Dy(Co,Si)2 compounds

    Full text link
    Magnetocaloric effect and magnetoresistance have been studied in Dy(Co1-xSix)2 [x=0, 0.075 and 0.15] compounds. Magnetocaloric effect has been calculated in terms of adiabatic temperatue change (Delta Tad) as well as isothermal magnetic entropy change (Delta SM) using the heat capacity data. The maximum values of DeltaSM and DeltaTad for DyCo2 are found to be 11.4 JKg-1K-1 and 5.4 K, respectively. Both DSM and DTad decrease with Si concentration, reaching a value of 5.4 JKg-1K-1 and 3 K, respectively for x=0.15. The maximum magnetoresistance is found to about 32% in DyCo2, which decreases with increase in Si. These variations are explained on the basis of itinerant electron metamagnetism occurring in these compounds.Comment: Total 8 pages of text and figure

    Wigner's little group and BRST cohomology for one-form Abelian gauge theory

    Full text link
    We discuss the (dual-)gauge transformations for the gauge-fixed Lagrangian density and establish their intimate connection with the translation subgroup T(2) of the Wigner's little group for the free one-form Abelian gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Though the relationship between the usual gauge transformation for the Abelian massless gauge field and T(2) subgroup of the little group is quite well-known, such a connection between the dual-gauge transformation and the little group is a new observation. The above connections are further elaborated and demonstrated in the framework of Becchi-Rouet-Stora-Tyutin (BRST) cohomology defined in the quantum Hilbert space of states where the Hodge decomposition theorem (HDT) plays a very decisive role.Comment: LaTeX file, 17 pages, Journal-ref. give

    An Alternative To The Horizontality Condition In Superfield Approach To BRST Symmetries

    Full text link
    We provide an alternative to the gauge covariant horizontality condition which is responsible for the derivation of the nilpotent (anti-)BRST symmetry transformations for the gauge and (anti-)ghost fields of a (3 + 1)-dimensional (4D) interacting 1-form non-Abelian gauge theory in the framework of the usual superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. The above covariant horizontality condition is replaced by a gauge invariant restriction on the (4, 2)-dimensional supermanifold, parameterized by a set of four spacetime coordinates x^\mu (\mu = 0, 1, 2, 3) and a pair of Grassmannian variables \theta and \bar\theta. The latter condition enables us to derive the nilpotent (anti-)BRST symmetry transformations for all the fields of an interacting 4D 1-form non-Abelian gauge theory where there is an explicit coupling between the gauge field and the Dirac fields. The key differences and striking similarities between the above two conditions are pointed out clearly.Comment: LaTeX file, 20 pages, journal versio

    Rigid Rotor as a Toy Model for Hodge Theory

    Full text link
    We apply the superfield approach to the toy model of a rigid rotor and show the existence of the nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations, under which, the kinetic term and action remain invariant. Furthermore, we also derive the off-shell nilpotent and absolutely anticommuting (anti-) co-BRST symmetry transformations, under which, the gauge-fixing term and Lagrangian remain invariant. The anticommutator of the above nilpotent symmetry transformations leads to the derivation of a bosonic symmetry transformation, under which, the ghost terms and action remain invariant. Together, the above transformations (and their corresponding generators) respect an algebra that turns out to be a physical realization of the algebra obeyed by the de Rham cohomological operators of differential geometry. Thus, our present model is a toy model for the Hodge theory.Comment: LaTeX file, 22 page
    corecore