6 research outputs found

    Genetic Analyses and Simulations of Larval Dispersal Reveal Distinct Populations and Directional Connectivity across the Range of the Hawaiian Grouper ( Epinephelus quernus

    Get PDF
    Integration of ecological and genetic data to study patterns of biological connectivity can aid in ecosystem-based management. Here we investigated connectivity of the Hawaiian grouper Epinephelus quernus, a species of management concern within the Main Hawaiian Islands (MHI), by comparing genetic analyses with simulated larval dispersal patterns across the species range in the Hawaiian Archipelago and Johnston Atoll. Larval simulations revealed higher dispersal from the MHI to the Northwestern Hawaiian Islands (NWHI) than in the opposite direction and evidence for a dispersal corridor between Johnston and the middle of the Hawaiian Archipelago. Genetic analyses using mitochondrial DNA (mtDNA) control region sequences and microsatellites revealed relatively high connectivity across the Hawaiian Archipelago, with the exception of genetically distinct populations and higher mtDNA diversity in the mid-Archipelago. These analyses support the preservation of the mid-archipelago as a source of genetic diversity and a region of connectivity with locations outside the Hawaiian Archipelago. Additionally, our evidence for directional dispersal away from the MHI lends caution to any management decisions that would rely on the NWHI replenishing depleted MHI stocks

    Isolation and characterization of nine microsatellite loci from the Hawaiian grouper Epinephelus quernus (Serranidae) for population genetic analyses

    No full text
    The availability of variable genetic markers for groupers (Serranidae) has generally been limited to mitochondrial DNA. For studies of population genetic structure, more loci are usually required; particularly useful are those that are nuclear in origin such as microsatellites. Here, we isolated and characterized 9 microsatellite loci from the endemic Hawaiian grouper Epinephelus quernus using a biotin-labeled oligonucleotide-streptavidin-coated magnetic bead approach. Of the 20 repeat-containing fragments isolated, 15 had sufficient flanking region in which to design primers. Among these, 9 produced consistent polymerase chain reaction product, and 6 were highly variable. These 6 loci were all composed of dinucleotide repeats, with the number of alleles ranging from 6 to 18, and heterozygosities from 33.3% to 91.7%. The high levels of variability observed should make these markers useful for population genetic studies of E. quernus, and potentially other epinephelines

    Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts?

    No full text
    We assessed evolutionary relationships among Hawaiian cave-adapted isopods using a maximum-likelihood criterion to analyze cytochrome oxidase I nucleotide sequences. Results support morphological data that two genera of philosciid isopods have invaded caves independently in the islands. In the genus Littorophiloscia, a sister relationship between a surface-dwelling species, L. hawaiiensis, and an undescribed cave species was corroborated. This evidence, along with the known parapatric distributions between species, supports a speciation event by an adaptive shift on the island of Hawaii from a marine littoral to a terrestrial subterranean habitat. The monophyletic genus Hawaiioscia contains four known obligate cave-dwelling species, each of which occurs on a separate island. However, despite present-day allopatric distributions between Hawaiioscia species, the geographic and phylogenetic patterns are not sufficient to support a vicariant mode of speciation. Instead, we believe that the known species of Hawaiioscia evolved from a widespread ancestral surface species or a group of closely related species through multiple, independent adaptive shifts on each of the islands of Kauai, Oahu, Molokai, and Maui. This is the first molecular investigation of evolutionary relationships between surface-dwelling and cavernicolous arthropods in Hawaii and it suggests that simple vicariance is insufficient to explain the evolution of troglobites in tropical zones

    Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts?

    No full text
    We assessed evolutionary relationships among Hawaiian cave-adapted isopods using a maximum-likelihood criterion to analyze cytochrome oxidase I nucleotide sequences. Results support morphological data that two genera of philosciid isopods have invaded caves independently in the islands. In the genus Littorophiloscia, a sister relationship between a surface-dwelling species, L. hawaiiensis, and an undescribed cave species was corroborated. This evidence, along with the known parapatric distributions between species, supports a speciation event by an adaptive shift on the island of Hawaii from a marine littoral to a terrestrial subterranean habitat. The monophyletic genus Hawaiioscia contains four known obligate cave-dwelling species, each of which occurs on a separate island. However, despite present-day allopatric distributions between Hawaiioscia species, the geographic and phylogenetic patterns are not sufficient to support a vicariant mode of speciation. Instead, we believe that the known species of Hawaiioscia evolved from a widespread ancestral surface species or a group of closely related species through multiple, independent adaptive shifts on each of the islands of Kauai, Oahu, Molokai, and Maui. This is the first molecular investigation of evolutionary relationships between surface-dwelling and cavernicolous arthropods in Hawaii and it suggests that simple vicariance is insufficient to explain the evolution of troglobites in tropical zones

    Ecomimicry in Indigenous resource management: optimizing ecosystem services to achieve resource abundance, with examples from Hawaiʻi

    No full text
    Here, we expand on the term "ecomimicry" to be an umbrella concept for an approach to adaptive ecosystem-based management of social-ecological systems that simultaneously optimizes multiple ecosystem services for the benefit of people and place. In this context, we define ecomimicry as a strategy for developing and managing cultural landscapes, built upon a deep understanding of the structure and function of ecosystems, that harnesses ecosystem processes for the purpose of balancing and sustaining key ecosystem services, rather than maximizing one service (e.g., food production) to the detriment of others. Ecomimicry arises through novel, place-based innovations or is adopted from elsewhere and adapted to local conditions. Similarly, precontact Hawaiian social-ecological systems integrated a variety of ecomimicry schema to engender a complex system of adaptive resource management that enhanced biocultural diversity and supported resilient food systems, ultimately sustaining a thriving human population. In addition to presenting a synopsis of how ecomimicry was employed in the design and management of Hawaiian social-ecological systems, we identify and characterize specific ecomimicry applications. Within this context, we explore a revival of ecomimicry for biological conservation, biocultural restoration, resilience, and food security. We conclude with a discussion of how revitalizing such an approach in the restoration of social-ecological systems may address issues of conservation and sustainability in the Anthropocene
    corecore