24 research outputs found

    Dysregulation of autophagy as a common mechanism in lysosomal storage diseases

    Get PDF
    The lysosome plays a pivotal role between catabolic and anabolic processes as the nexus for signalling pathways responsive to a variety of factors, such as growth, nutrient availability, energetic status and cellular stressors. Lysosomes are also the terminal degradative organelles for autophagy through which macromolecules and damaged cellular components and organelles are degraded. Autophagy acts as a cellular homeostatic pathway that is essential for organismal physiology. Decline in autophagy during ageing or in many diseases, including late-onset forms of neurodegeneration is considered a major contributing factor to the pathology. Multiple lines of evidence indicate that impairment in autophagy is also a central mechanism underlying several lysosomal storage disorders (LSDs). LSDs are a class of rare, inherited disorders whose histopathological hallmark is the accumulation of undegraded materials in the lysosomes due to abnormal lysosomal function. Inefficient degradative capability of the lysosomes has negative impact on the flux through the autophagic pathway, and therefore dysregulated autophagy in LSDs is emerging as a relevant disease mechanism. Pathology in the LSDs is generally early-onset, severe and life-limiting but current therapies are limited or absent; recognizing common autophagy defects in the LSDs raises new possibilities for therapy. In this review, we describe the mechanisms by which LSDs occur, focusing on perturbations in the autophagy pathway and present the latest data supporting the development of novel therapeutic approaches related to the modulation of autophagy.</jats:p

    Cooperativity between KorB and TrbA Repressors of Broad-Host-Range Plasmid RK2

    No full text
    The KorB and TrbA proteins of broad-host-range plasmid RK2 are key regulators of the plasmid genes required for conjugative transfer. trbBp is the primary promoter responsible for expression of mating pair formation genes. We show that despite the targets for KorB and TrbA at trbBp being about 165 bp apart, 189 bp upstream of the transcription start point and overlapping the −10 region, respectively, these two proteins show up to 10-fold cooperativity for the repression of trbBp. Deletion analysis of TrbA showed that the C-terminal domain (CTD), which has a high degree of sequence conservation with the CTD of KorA, is required for this cooperativity with KorB. Western blotting demonstrated that the apparently mutual enhancement of repression is not due simply to elevation of repressor level by the presence of the second protein, suggesting that the basis for cooperativity is interaction between KorB and TrbA bound at their respective operators
    corecore